
by
Eugen Hon Wai Yu

Evaluation of
Focus Methods

in a
Ubiquitous Computing

Environment

Diploma Thesis at the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. -Ing. Karl-Friedrich Kraiss

Registration date: October 05th, 2005
Submission date: May 17th, 2006

iii

Erklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbständig und ohne Be-
nutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Alle Stellen, die
wörtlich oder sinngemäß aus veröffentlichten oder nicht veröffentlichten Schriften
entnommen sind, sind als solche kenntlich gemacht.

Aachen, den 17. Mai 2006

v

Contents

Erklärung iii

Abstract xvii

Überblick xix

Acknowledgements xxi

Conventions xxiii

1 Introduction 1

1.1 Interactive Workspace 1

1.2 Control of multiple devices 4

1.3 Scope and Contribution 8

1.4 Structure of this thesis 11

2 Related work 13

2.1 Single Display Groupware 13

2.1.1 Multi-Cursor window manager 14

vi Contents

2.1.2 The Pebbles Project 15

2.2 Interactive Workspaces 16

2.2.1 ARIS 16

2.2.2 PointRight 18

2.2.3 The Intelligent Conference Room . . . 18

2.2.4 Universal Interaction Controller . . . 19

2.3 Post-desktop interaction 21

2.3.1 Speech interface 21

2.3.2 Pointing gesture 22

2.3.3 Multimodal interfaces 23

2.3.4 Eye-Tracking 24

2.3.5 Continuous tracking techniques . . . 25

3 Theory of focus 27

3.1 Focus in traditional desktop environment . . 28

3.2 Focus in Interactive Workspace 29

3.3 Shifting focus 32

3.4 Tuple construction 33

3.4.1 Recognition 35

3.4.2 Indication 35

3.4.3 Selection 36

3.4.4 Feedback 37

3.5 Implicit and Explicit focus techniques 37

Contents vii

3.6 Distant interaction 38

3.7 Focus methods 41

4 Prototyping Interactive Workspace 43

4.1 MediaSpace 44

4.2 Infrastructure 46

4.2.1 Patch Panel 48

4.3 Patch Panel script 49

4.3.1 Future improvements 51

4.4 Interaction with the testbed 52

4.4.1 Primary Tasks 52

4.4.2 Procedure 54

4.4.3 The Wizard 55

4.4.4 Quantitative metrics 56

5 Preliminary testing 59

5.1 Focus technique 59

5.2 Procedure . 60

5.3 Results and Discussion 61

5.4 Method refinement 64

6 Comparison of Focus Techniques 65

6.1 Focus Techniques 65

6.1.1 Dedicated-Keys 66

viii Contents

6.1.2 Speech commands 66

6.1.3 Pointing gesture 67

6.1.4 Touch-to-Focus 68

6.2 Procedure . 69

6.2.1 Modification 69

6.3 Results . 70

6.4 Discussion . 70

6.5 Method refinement 74

7 Comparison with GUI-based technique 75

7.1 Focus techniques 75

7.1.1 Virtual-Path 76

7.1.2 World-in-Miniature 76

7.2 Procedure . 76

7.3 Results . 78

7.4 Discussion . 79

8 Summary and Future work 81

8.1 Summary . 81

8.2 Future work 83

8.2.1 Simplified conditions 83

8.2.2 Validity of methods 84

Choice of measure 85

Contents ix

8.2.3 Focus device prototype 85

8.2.4 Coexisting focus techniques 87

A Patch Panel script 89

B NSWorkspace proxy 95

C Questionnaire 97

Bibliography 101

Index 107

xi

List of Figures

1.1 Sharing information on multiple machines . 4

1.2 Concurrent manipulation of content 5

1.3 Sharing devices among users 5

1.4 Example of an Interactive Workspace 6

1.5 Communication between AppleScript and
Event Heap 11

2.1 Multi-Cursor window manager 14

2.2 PebblesDraw application 16

2.3 ARIS’ iconic map 17

2.4 PointRight - virtual path 19

2.5 The Ukey device 20

2.6 Using the Ukey device 21

2.7 Freehand pointing 23

2.8 XWand - a pointing device 24

2.9 A gaze-sensitive device 25

xii List of Figures

3.1 Focus-on-Click focus policy 28

3.2 Focus-follows-Mouse focus policy 29

3.3 Example showing route as a tuple 31

3.4 3-steps-model 34

3.5 Exposé . 36

4.1 The MediaSpace at RWTH Aachen 45

4.2 Layout of plasma displays 46

4.3 Input devices used 47

4.4 The cooperation between Event Heap and
Patch Panel . 48

4.5 Examples of instruction icons 54

4.6 Wizard’s interface to control event redirection 56

4.7 Dependent variable - Focus time 57

6.1 Laser sensor 67

6.2 Circuit of the laser sensor 68

6.3 Output focus time of pointing with a laser
pointer, speech commands, Touch-to-Focus,
and Dedicated-Keys 71

6.4 Grading of pointing with a laser pointer,
speech commands, Touch-to-Focus, and
Dedicated-Keys 71

6.5 Fitt’s law . 73

7.1 An iconic map of MediaSpace 77

List of Figures xiii

7.2 Output focus time of Dedicated-Keys,
Virtual-Path, World-in-Miniature 78

7.3 Grading of Dedicated-Keys, Virtual-Path,
World-in-Miniature 79

8.1 Prototype of a pointing device 85

8.2 Prototype of a pointing device 86

xv

List of Tables

3.1 Focus Space modification: the system allo-
cates the devices fro Bob by inserting a tuple
into the Focus Space. 33

3.2 Focus Space modification: the plasma dis-
play is non-exclusively shared by Bob and Jim. 33

3.3 Focus Space modification: when a tuple is re-
moved, the devices allocated are free again.
Their control are released. 34

4.1 Example of a switch statement 51

6.1 Mapping between keys and displays 66

6.2 Group plan in chapter 6 70

6.3 We applied the Fitt’s law model to the point-
ing technique. 73

7.1 Group plan in chapter 7 77

A.1 Grammar of Patch Panel script 90

A.2 Statement in Patch Panel script 91

A.3 Terminal symbols in Patch Panel script 92

xvi List of Tables

A.4 Experssion in Patch Panel script (i/ii) 93

A.5 Experssion in Patch Panel script (ii/ii) 94

B.1 Toggle active window event 95

B.2 Activate window event 95

B.3 Activate window event 96

B.4 Get activate window event 96

xvii

Abstract

More than 25 years have passed since the first introduction of desktop computers.
Most people are now familiar with the use of a mouse and keyboard to control a
single desktop machine.

Researchers predict that our life will be enriched by even more devices in the near
future. Unlike desktop machines these devices are not strictly coupled to a single
machine. Multitasking will not only be supported by switching applications but
also by changing the way how we use and combine devices.

To further understand how users can interact with a room populated with com-
puter enhanced devices, this thesis analyses the differences between such an envi-
ronment and a traditional desktop environment. In particular, we are interested in
how users can actively control the way devices communicate with each other.

Further, we conduct several experiments to compare existing techniques and point
out relevant factors and obstacles that should be considered in future design.

xviii Abstract

xix

Überblick

Seit der ersten Einführung von Desktop Computer sind nun mehr als 25 Jahren
vergangen. Der Umgang mit fensterbasierten Betriebssysteme gehört mittlerweile
zum alltäglichen Wissen.

Forscher sagen voraus, dass wir in naher Zukunft in einer Welt leben werden, die
mit vielen intelligenten Geräten ausgestattet sind.

Im Gegensatz zum Desktop Computer sind diese Geräte nicht fest an einem einzi-
gen Computer gebunden. Multitasking, die gleichzeitige Bearbeitung mehrerer
Aufgaben, wird dann nicht nur durch den Wechsel der Anwendungsprogramme
unterstützt, sondern auch durch ein flexibleres Zusammenspiel von Arbeits-
geräten. Mit welchen Eingabe- und Ausgabegeräten ein Nutzer seine Aufgaben
erledigen wird, wird nicht vom Systemdesigner vorher bestimmt werden.

Um die Interaktionen in einer solchen Umgebung besser zu verstehen, analysieren
wir im Rahmen dieser Diplomarbeit die Unterschiede zwischen einer derartigen
Umgebung und einem traditionellen Desktop Computer.

Insbesondere interessieren wir uns für die Frage, wie ein Nutzer die Kommunika-
tion zwischen verschiedenen Geräten aktiv verwalten kann.

Um bekannte Methoden miteinander zu vergleichen, wurde ein Prototyp gebaut,
der eine solche Umgebung simuliert. Mit diesem haben wir mehrere Experimente
durchgeführt, um entscheidende Faktoren und Einschränkungen dieser Methoden
zu ermitteln. Ebenfalls wollen wir mit den gewonnene Kenntnissen neue Metho-
den entwickeln.

xxi

Acknowledgements

First of all, I would like to thank Prof. Dr. Jan Borchers for giving me this interesting
and challenging thesis topic.

On my way to grasp the vision and the spirit of ubiquitous computing, Tico Bal-
lagas gave me a lot of guidance and helpful hints. Apart from his comments and
tips for my experimental design, I would like to thank him for his reviews and
comments on my thesis work.

I want to thank Prof. Karl-F. Kraiss for being my second examiner, besides I am still
grateful for the excursion to Liège three years ago.

I would also like to thank all past and present members of the Media Computing
Group for the joyful time. I enjoyed the spontaneity, creativity, and humour of
every member of the chair a lot.

Since my thesis deals with a networked environment, I have to thank the system
administrators, Christoph Wilhelm and Stefan Werner, for providing me a stable
platform to work with. They were excetpionally helpful during the migration from
Panther to Tiger.

Many thanks go to the reviewers, without whom this work would not exists. I want
to express all my thanks to Anke Sprödefeld, Michael Bieseke, Robert Kalis, Volker
Schönefeld, and especially Torsten Sattler for all their help and support. Well, and,
did I mention Torsten Sattler?

Without the works of preceding diploma students, this thesis would not have the
form it currently has: I would like to thank Thorsten Karrer for his lovely Tex-
template, Nils Beck for his title design, and Jan Buchholz for his stencil packages.

I would also like to thank the numerous students who participated on the exper-
iments; their efforts, comments, and creative suggestions are an important part of
this thesis.
Finally, I would like to thank my parents and my brother for their love and support.

Thank you.

xxiii

Conventions

Throughout this thesis we use the following conventions:

Text conventions

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text:

myClass

The whole thesis is written in British English.

1

Chapter 1

Introduction

“Machines that fit the human environment,
instead of forcing humans to enter theirs, will make
using a computer as refreshing as taking a walk in

the woods.”

—Mark Weiser, The Computer of the 21st Century

1.1 Interactive Workspace

Mark Weiser’s vision of tomorrow’s computing [Weiser,
1991] consists of multiple computationally enhanced ob-
jects that become part of the fabric of our everyday lives.

We are approaching this vision as hardware costs keep on
falling. Hardware like large displays, wireless network,
surround sound systems, mobile devices, like cell phones,
digital cameras, Personal Digital Assistants, finds its way
into living rooms and offices. These devices form an envi-
ronment that is named the Interactive Workspace [Johan-
son et al., 2002a].

INTERACTIVE WORKSPACE:
Interactive Workspace is a room with multiple computer-
enhanced devices. Multiple users are expected to work
in such a room collaboratively.

Definition:
Interactive
Workspace

2 1 Introduction

To illustrate the advantages of using an Interactive
Workspace for collaborated working, consider the follow-
ing scenario:

Peter, Clark, Barbara, and Mary are members of the ed-
itorial staff of ‘Business Weekly‘, a weekly published mag-
azine. Currently they are holding a meeting in an interac-
tive room. This room consists of two plasma displays, each
of which is attached to a separate machine. After allScenario: editorial

staff members have taken their seats, Mary walks up to a wall-
mounted display (Display A). She transfers some data from
her laptop to the display, presenting the cover of the up-
coming issue using a standard graphical program. ‘Our
cover story of our next issue will forecast the global econ-
omy in the next decade.‘

Clark suggests, ‘Hey Mary, the design looks great. But
how about using a font that creates a more dramatic feel? ‘

‘I am not sure what you mean? ‘
‘Let me show you.‘
Instead of walking up to the display to modify the

document, Clark requests the system, saying, ‘Let me con-
trol the graphical editor on Display A.‘ A tone sounds to
confirm the new setting. Clark now uses the mouse and
the keyboard in front of him to apply various effects on the
font. A few clicks later, he says, ‘There you go.‘

To compare the different designs Mary opens the same
document with the previous design on another display
(Display B). Mary agrees with the alternate design, ‘That’s
a good idea, looks more appealing. Let’s use the new one.‘

Peter is also satisfied, ‘I think I can also use this style
in my article as well,‘ opening a document on display B.
‘Mary, do you mind if I close the document? ‘

‘Go ahead. I still have a copy on my machine.‘
Peter uses his preferred pointing device, his digital

pen, to close the window. Then he copies the cover’s style
and pastes it to his article. Barbara, who is sitting next to
Peter, asks, ‘Peter, can I borrow your pen for a while? I
need to sketch a diagram.‘

‘Here you are,‘ passing the pen to Barbara. ‘Thanks,‘
says Barbara, grabbing Peter’s device and starts scribbling.

In this scenario we see how Mary shares her work on mul-

1.1 Interactive Workspace 3

tiple displays. We observe how Clark uses a speech com-
mand to change the configuration of the room, including
the behaviour of its devices. Both Mary and Clark can con-
trol a document concurrently to exchange their ideas. Any
member can join the interaction as needed. Devices become
properties of the room that can be shared among users.

Following interactions are important to make a room ap-
pear to be such a coherent system:

• Sharing information on multiple machines.

• Concurrent manipulation of content.

• Sharing of devices among multiple users.

Sharing information on multiple machines
People often change their working environment. They

leave their office for a meeting, a conference, or a
presentation. In a shared environment workers will need Sharing content
to share information such as their current results or their
schedules. For that, data from the private workspace has to
be easily accessible. Further, users should be able to trans-
fer data to other workers or from device to device (see Fig-
ure 1.1).

Concurrent manipulation of content
Beside conversation, collaborative modification or creation
of digital artefact are means for users to exchange ideas in
multiple user workspaces (see Figure 1.2). In the physical Concurrent

manipulationworld workers can write on the same sheet of paper. In
the digital world sharing of devices is not that easy or even
unsupported. Therefore an Interactive Workspace should
support this feature as well.

Sharing of devices among multiple users
In everyday’s life people can pick up tools like pen and

paper, use them, pass them to another person, and she can
continue using them seamlessly. Computer devices do not Sharing devices
share this flexibility. Although the use of wireless network-
ing technologies increased a lot in the past decades, devices
such as mice and keyboards are still bound to a single ma-
chine. When a room is equipped with multiple computers

4 1 Introduction

and devices, we would like to combine their use in a way
that suits our task (see Figure 1.3). Thus the system should
provide users a way to manage communication between
devices.

Figure 1.1: Sharing information on multiple machines.

Each of these problems forms a research area of its own.
We will focus on the third problem and investigate how
users can manage multiple devices. In the following work,
we will call a room with such qualities an Interactive
Workspace. Figure 1.4 shows an example of an Interactive
Workspace.

1.2 Control of multiple devices

Devices mediate the communication between users and the
system. An input device transmits the users’ action to
the system whereas an output device delivers the system’s
message back to users. If a room contains multiple devices,
each user has to choose which devices she wants to use.

1.2 Control of multiple devices 5

Figure 1.2: Concurrent manipulation of content.

Figure 1.3: Sharing devices among users.

6 1 Introduction

Figure 1.4: An Interactive Workspace with multiple users
and multiple devices.

However, the primary interest of users is to complete a task.
Spending too much time on setting the room’s configura-
tion will create an unsatisfying experience. In the worst
case a user might be so distracted by the configuration task
that she forgets her primary task. This is especially unde-Non-interrupting
sired if the Interactive Workspace is used for fast and criti-
cal decisions such as in a fusion control room [Wallace et al.,
2004].

Therefore we are searching for techniques that are natural,
easy to learn, and easy to perform. They should provide
a fast way to change the room’s settings and to inform the
system what a user wants to control. Advances in this field
also have benefits for other research area: techniques that
work well for Interactive Workspaces can also be applied
to an intelligent home.

In a traditional desktop environment each user is assumed
to process a single pointing device and keyboard, which
can be used to control an application on a display. Events
generated by the keyboard are redirected to a specific com-
ponent inside this application. This component is called
the focus. To change this focus, a user has to select an active
window using the pointing device. First, she moves her

1.2 Control of multiple devices 7

cursor icon above the widget of a window, e.g., a textfield,
then she clicks on the mouse button. The textfield will be
highlighted and all keyboard inputs will be redirected to it.
Some events insert characters into this widget, while other
key combinations invoke special commands like copy and
paste.

The scenario above illustrates a focus policy named Focus-
on-Click, which is a common interface of many modern op-
erating systems. There are also other window managers Focus-on-Click
supported by UNIX systems that introduce further focus
policies such as Focus-follows-Mouse and Sloppy-Focus, see
[Alex Hioreanu’s Window Manager]1 . In both cases win-
dows are activated when the cursor enters the frame of a
window, no further clicking is required to activate a win-
dow. Another common method to change the focus is to
use key combinations to switch through all running appli-
cations.

We see that even for the traditional desktop, there are dif-
ferent focus techniques.

In general, the shift of focus can be understood as the estab-
lishment of a virtual route that redirects input events to the
application associated with the active window. The result
of the application will be shown on an output device.

FOCUS METHOD:
Focus method, also called focus task, is a set of actions
taken with the aim to change a system’s focus. After
which, the system redirects events different than before.

Definition:
Focus method

Users shift their focus to resume their task using another set
of devices. It is important to distinct the focus task from their
primary task. Thus we define the primary task as follows:

PRIMARY TASK:
The actions a user takes to archive her goal that she wants
to solve with an Interactive Workspace.

Definition:
Primary Task

1http://people.cs.uchicago.edu/ ahiorean/ahwm/

http://people.cs.uchicago.edu/~ahiorean/ahwm/

8 1 Introduction

1.3 Scope and Contribution

In this study, we will compare different focus methods in
terms of performance and acceptance by users. To date, the
concept of focus is still closely related to the practises and
understandings of the traditional desktop environment. In
this work we will explore a model that extends the current
understanding of focus. We will see what makes up the
focus in the context of an Interactive Workspace.

To explore various aspects of focus techniques, we ap-
ply the RWTH MediaSpace to emulate an Interactive
Workspace. We are interested in physical interaction tech-
niques such as pointing, speech command, or selection by
physically touching a device. For these techniques, no
graphical display is required.

Although many projects explored collaboration on a single
display, there are not many works that address the problem
of input management. Especially the following questions
are of our interest:

• What is the difference between the focus of a tradi-
tional desktop and an Interactive Workspace?

• Do we have to introduce new devices dedicated to
this function?

• What factors are relevant for the design of focus tech-
niques?

• What factors are important in deciding which tech-
nique to use?

In general there are two types of focus methods: implicit
focus techniques

1.3 Scope and Contribution 9

IMPLICIT FOCUS TECHNIQUES:
Implicit focus techniques are also known as system-
initiated focus methods; they require a continuous mon-
itoring and interpreting of the users’ behaviour; it is the
system’s responsibility to resolve the users’ intention and
to set the event redirection route(s) accordingly. These
techniques belong to the category of adaptive interfaces.

Definition:
Implicit focus
techniques

and explicit focus techniques.

EXPLICIT FOCUS TECHNIQUES:
Explicit focus techniques are also known as user-initiated
focus methods. With an explicit focus technique, a user
has to consciously take a concrete action to define the fo-
cus.

Definition:
Explicit focus
techniques

In this work, we will explore explicit focus techniques. Im-
plicit techniques differ from explicit techniques that they
require more effort and cost to prototype and to implement.
For instance, to gather implicit information, a tracking sys-
tem that covers the users’ position in the room is required.
Furthermore, implicit techniques often require technology
from the area of artificial intelligence and predefined mod-
els to resolve the users’ intention. We will discuss and com- Explicit focus

technique onlypare these two classes of techniques in detail in chapter 3.

A further experiment compares two graphical user inter-
face (GUI) based techniques with a physical one. One of the
GUI-based techniques applies a miniaturised iconic map
for the user to select. Another technique uses the cursor
to identify the selected machine.

To reduce the complexity of our experimental design, we
will only consider a single user environment . If we want
to scale our environment to multiple users, we have to find
a way to keep track of who is sending an event. Many
projects avoid this problem by assuming that the users in-
terface with the room though their personal devices. This
could be Personal Digital Assistants (PDAs), notebooks, or
mobile phones. We do not make this assumption in our
work, because we want to allow arbitrary persons to use
the system. Since we are dealing with a setting designed

10 1 Introduction

for a single user, we neglect the social effects of multiple
users.

Contribution In the theoretical part of this work we
will introduce a framework about focus in Interactive
Workspaces. This framwork is based on the work by [Bal-
lagas et al., 2003]. It is applied to analyse both traditional
and post-desktop environment. We will discuss the gener-Generative model
ative features of this framework which can help future de-
signers to look for interesting interactions. Another model
presented is a 3 steps model that organises a selection tech-
nique into three phases. It is based on Raskin’s elementary
task [Raskin, 2000]. It can be used for heuristic evaluation
of new selection techniques. To identify further factors that
have an impact on the performance of focus techniques, we
map [Nacenta et al., 2005]’s evaluation of content relocation
to the domain of focus techniques.

During the development of our testbed, several tools have
been developed to improve the existing system. A new
Patch Panel scripting language is implemented to over-
come some shortcomings of the original script. The new
grammar is documented in appendix A.

To control applications remotely, a scripting language Ap-
pleScript is used in the testbed. For example, it is used to
provide audio feedback or to rearrange windows. We in-
creased the performance of its proxy to create a more fluid
interaction for testpersons.

Another attempt to reduce delays of windows rearrange-
ment is to access the window manager of each machine lo-
cally. A proxy for the NSWorkspace object in the Cocoa ob-
jective C language is created to allow the users to remotely
change the active window (see appendix B).

With the AppleScript proxy mentioned above the users can
only send AppleScript scripts to a machine for execution.
We implemented the other direction, so that the users can
send events by calling an AppleScript script (see Figure
1.5). Since many software products for Macintosh use Ap-
pleScript to extend their functionality, this interface enables

1.4 Structure of this thesis 11

further possibilities to prototype new interactions. For ex-
ample, in combination with third party applications such as
SallingClicker2 or FlyGesture3 , the users can send events
to the Event Heap with their mobile phones or invoke ser-
vices in the room with a mouse gesture.

AppleScript
Proxy

AppleScript
EventEvent

Heap

User-defined
EventEvent

Heap Appple
Script

Figure 1.5: The upper case describes how an AppleScript
event can execute its content on a machine running the Ap-
pleScript proxy; the lower case shows how the execution of
an AppleScript script sends an event to the Event Heap.

Finally, we will discuss a series of experiments we con-
ducted. We use them to compare physical focus techniques
and GUI-based focus techniques. Based on the results we
gathered from the experiments we will propose a new focus
device.

1.4 Structure of this thesis

Chapter 2 is a review of literature and related works in the
field of event redirection in a post-desktop context. There
are three main categories of review: we start with systems
that provide a single display shared by multiple users; then
we take a look at other existing interactive rooms; we also
review literature about technologies that can be used to im-
plement focus techniques.

2http://www.salling.com/Clicker/mac/
3http://flyingmeat.com/flygesture/

http://www.salling.com/Clicker/mac/
http://flyingmeat.com/flygesture/

12 1 Introduction

In chapter 3 we analyse the term focus in the context of the
traditional desktop; and generalise this concept to Inter-
active Workspaces. A comparison of implicit and explicit
focus techniques shows their key differences and explains
why we prefer explicit focus methods in our research. To
ease later discussions, we introduce a model to describe fo-
cus techniques. Distant interaction is another research field
in Human Computer Interaction(HCI), we analyse the rel-
evancy of some of their results in our context.

In chapter 4 we describe the components that make up our
experimental platform. We present the hardware and soft-
ware we have used to prototype some aspects of an Inter-
active Workspace. We also talk about the problems we en-
countered during the development of the testbed and how
we solved them. Beside the testbed, we also discuss the
method we apply in detail. This includes the task our sub-
jects have to solve and the procedure of each trial. Both,
the described testbed and the method, apply to the subse-
quent chapters, in which we compare different sets of focus
techniques.

In chapter 5, 6, and 7 we present the results of our exper-
iments and our observations; then we discuss the charac-
teristics of each focus technique. The experiments also un-
cover problems in our method and testbed. Thus they help
us to refine our evaluation method incrementally.

Finally, chapter 8 summarises this thesis work and dis-
cusses the effects of the assumptions we made in our ex-
periments. A stepwise removal of these assumptions might
induce further research. Furthermore, we introduce a focus
device prototype that regards the results we collected from
the experiments.

13

Chapter 2

Related work

“If God has created the world, his primary
worry was certainly not to make its understanding

easy for us.”

—Albert Einstein

2.1 Single Display Groupware

Since the introduction of large displays, much work has
been done to improve their usage. Many of these works
investigate how to use a large screen space in a more effec-
tive way and how collaborated computing enables multiple
users to control a single shared display. These systems of-
ten identify users by their private device such as personal
digital assistant or personal computer. Note that in these
systems, inputs from private devices will be directed to the
shared one. We can consider these projects as the first at-
tempts to break away from the strictly coupled computer
environments. We will call this class of systems Single Dis- Away from strictly

coupled devicesplay Groupware.

14 2 Related work

2.1.1 Multi-Cursor window manager

The Multi-Cursor window manager introduced by [Wal-
lace et al., 2004] is a system that enables users to connect to
a shared display using their local machine. Upon connec-Distinguish users
tion a coloured cursor will be displayed. If the user selects
a window with her cursor the border of that window will
turn into the same colour (see Figure 2.1).

Figure 2.1: The Multi-Cursor window manager uses
colour-coding to distinguish users from each other. Taken
from [Wallace et al., 2004].

To differentiate events from different devices, an identity
number has to be attached to each of them. In their work
only three bits are available, therefore at most eight persons
can use the shared machine simultaneously, although an
average person can discriminate up to 150 different hues.

It is comparable to the PointRight system (see section
2.2.2) because it extends the Windows-Icon-Menu-Pointer
(WIMP)[Chignell and Waterworth, 1991] metaphor to a
new environment: mouse and cursor are still regarded as
primary tools to manage input redirection.

2.1 Single Display Groupware 15

2.1.2 The Pebbles Project

In the Pebbles Project, Brad Myers and his fellow re-
searchers explored various interaction techniques between
personal computers and mobile devices such as Personal
Digital Assistants (PDAs) [Myers, 2000]. One of their ap-
plications, the Remote Commander, allows users to control
the same cursor on a shared machine. Further, users can
also send keyboard inputs using Graffiti, a standard ges-
ture recognition program for PDAs.

However, the system does not offer explicit control over the
cursor’s ownership. It relies on the social protocol among
the users to decide whose turn it is. Thus, there is no se-
mantic of device ownership or dynamic control reconfigu-
ration in their work.

Among all applications that are created in the Pebbles
Project, the PebblesDraw application is most related to our
project (see Figure 2.2). Each user can configure the applica-
tion to accept events from her PDA. On the GUI of Pebbles-
Draw, there is a special button labelled with ”Add User”. If Input device joins

applicationa user wants to join the interaction with PebblesDraw, she
can ask a collocated user, who is already using the appli-
cation, to press the ”Add User” button to grant her access,
after which she has to type in her name and the serial port
number of her PDA to identify her inputs. This can be seen
as a focus technique at the level of input devices.

In this work they use a different approach to distinguish
between different cursors than the Multi-Cursor window
manager. Beside drawing cursors in different colour, the
shapes of cursors are also varied. Further, the current draw-
ing tool selected is also visible in a icon next to the cursor.

PebblesDraw, Wasinger’s ShopAssist [Wasinger and
Krüger, 2005], and Slay’s Ukey device [Slay and Thomas,
2006] share a common feature: users interact with their
environment through their PDAs.

16 2 Related work

Figure 2.2: PebblesDraw is controlled by multiple PDAs.

2.2 Interactive Workspaces

We have seen how different projects exploit a single out-
put device to support collaborative interaction. As stated in
chapter 1, Interactive Workspaces are equipped with more
than just one display. Moreover, we can find multiple types
of device in such an environment. The main challenge ofMultiple devices
the following projects is to improve the management of in-
formation across multiple displays.

2.2.1 ARIS

[Biehl and Bailey, 2004] introduced the ARIS (Application
Relocation in Interactive Space) system, which is based on

2.2 Interactive Workspaces 17

the Gaia architecture [Romàn et al., 2002]. The motivation
of their work was to enable users to move running appli-
cations among displays. This is more convenient than pure
content relocation as the user does not have to reopen an
application to modify or view the transfered content.

On each desktop, running applications are visualised by
windows. Windows that can be relocated contain a spe-
cial button in the title bar. Upon clicking on this button, an
iconic map appears on the screen. This map shows a top-

Figure 2.3: An iconic map. Taken from [Biehl and Bailey,
2004].

bottom layout of the room. The displays in the room and
applications running on them are represented by icons in
this map. The icons of each display are positioned relative
to their physical position. Similarly, the icons represent- Drag and drop

applicationing running applications are sized and located relatively to
their current display. Users can relocate an application by
dragging an application-icon and dropping it on the icon of
a target display.

It is likely that the user wishes to continue manipulating
the content after relocating a window on the new display.
Hence, a second feature is introduced which allows users
to redirect their mouse and keyboard input to another dis-
play. To specify the target display, the user moves the cur-

18 2 Related work

sor above its icon. After two seconds, the system confirms
the new setting by changing the icon of the target display.

2.2.2 PointRight

In the traditional desktop environment a pointing device is
the primary input device to change the focus. This tech-
nique still works if multiple displays are attached to a
single machine. For instance a software called nView by
Nvidia support this feature [nView]1 . However, if the dis-
plays are connected to independent machines, the borders
of the local display become the boundaries of the cursor.

To solve this problem [Johanson et al., 2002b] introduced
the PointRight system in Stanford’s iRoom. Each user of
the system is required to bring along their personal com-
puters with a pointing device and a keyboard. The cursor
on their personal computer can be understood as an indi-
cator of ”where the user is”. If the user moves the cursorVirtual topology
out of the display’s border the cursor ”reappears” on an-
other display according to a predefined room model (see
Figure 2.4). This creates the illusion that all displays are
connected to the same machine in a multi-display configu-
ration. These connections between the various display are
also referred as ”Virtual Paths”. Furthermore, the input of
the keyboard follows the cursor.

2.2.3 The Intelligent Conference Room

MIT’s Intelligent Room [Brooks, 1997] is a long-running fa-
cility, that is used for formal and informal meetings. It
is equipped with numerous computer-controlled devices
such as lights, projectors, LED displays and sound equip-
ment. People in the room are detected and checked by
cameras that are also applied to record meetings. To detect
sound in the room, an array of microphones is mounted on
the ceiling. Although a wall-mounted LCD touchscreen isSpeech command
the primary interface to configure the room and to show its

1http://www.nvidia.com/object/feature nview.html

http://www.nvidia.com/object/feature_nview.html

2.2 Interactive Workspaces 19

Figure 2.4: When a user moves her cursor out of the display,
it ”reappears” on another one.

status, users can also use a hand-held microphone to access
services supported by the room.

To create a more natural speech interface and explore af-
fective interfaces, a spin-off project works on an avatar as
an interface to control the room’s configuration. It also ap-
plies eye-tracking technology so that the avatar responds to
speech commands only if the speaker looks at it.

This project makes extensive use of technologies in com-
puter vision, robotics, speech understanding, and natural
language processing to capture the context of a group meet-
ing.

Compared to the projects PointRight and ARIS, the Intelli-
gent Room does not discriminate users; there are only two
parties: the room and the group of users in the room. One
of the users is chosen as the main user. Therefore the col-
laboration happens rather on a social level.

2.2.4 Universal Interaction Controller

Slay and Thomas introduced the Universal Interaction Con-
troller (UIC) in [Slay and Thomas, 2006]. It consists of four

20 2 Related work

components: the Interaction Manager, the Ukey device, the
Clipboard Manager, and the Ve-World. Similar to Stan-
ford’s iRoom, their communication architecture builds on
the Event Heap and Data Heap.

The Interaction Manager is responsible for event redirec-
tion. Depending on its state it translates input from hetero-
geneous modalities and forwards them to the correct recip-
ients.

A user’s focus changes as he reconfigures the Interaction
Manager. This is done through the Ukey device (see Figure
2.5). A tracking framework mounted on the ceiling informs
the system where the Ukey device is pointing to.

However, the primary task of Ukey is to copy content from
a display and paste it onto another. For that Ukey and the
Clipboard Manger work together to transfer data from a
display to the Ukey, then from the Ukey back to another
display. Users point with the Ukey device to determine the
source and target of data. It is not further mentioned how
Ukey might cooperate with further input devices.

Figure 2.5: The Ukey devices can tell the system where a
user is pointing to. Taken from [Slay and Thomas, 2006].

The Ve-world is a virtual reality based application; it uses
information from the tracking framework and visualises
the devices in the room with all its significant furniture for
orientation. Further, a virtual ray shows which display the

2.3 Post-desktop interaction 21

Figure 2.6: To interact with a room a user points her device
to a display and uses the touch sensitive PDA to copy and
paste content. Taken from [Slay and Thomas, 2006].

user is pointing at.

2.3 Post-desktop interaction

Beside the methods proposed in the projects mentioned
above, we can find further potential techniques to control
devices that use post-desktop technologies.

Also we will discuss some projects that explore the use of
speech, gesture, or spatial information. We will consider
their applicability in our domain. Further, these techniques
can be combined into a multimodal or bimanual interface.

2.3.1 Speech interface

Among post-desktop interfaces speech is an important re-
search area. In [Rosenfeld et al., 2001] Rosenfeld points out
two characteristics of speech:

22 2 Related work

• ”Speech is an ambient medium rather than an atten-
tional one.”

• ”Speech requires modest physical resources.”

The first point suggests that a speech interface does not re-
quires focused attention. In an Interactive Workspace the
users’ primary concern is to solve a task using the room
while the management of its devices should not interrupt
the primary task. Therefore speech is an appropriate tech-
nique to handle the management.

Further, the users’ locations are not fixed, they might need
to access devices that are out of their reach. Using speech
commands, users do not need to travel across the room.

To date, technologies that recognise concrete word becomes
more and more common in mobile devices, such as in
[Leong et al., 2005]. Although their work mostly concen-
trates on the implementation details and acurracy of the
system, it indicates that one can use speech to control pro-
jector screens, projectors, and lights in their experimental
settings. This further motivates the use of speech com-
mands as focus techniques in this work. We will take a
closer look at how speech performs in our context in chap-
ter 7.

2.3.2 Pointing gesture

When someone asks you, ’Where is the post office?’, you
probably will say, ’Turn left around that corner’, pointing
with the finger in the direction you are referring to. Dur-
ing a conversation in the real world, pointing is a natural
gesture to supplement a message. In the following we will
review some projects that use this gesture to interface with
a system.

[Vogel and Balakrishnan, 2005] explored different instances
of freehand pointing. Their prototype is based on a motion
tracking system where the user needs to wear passive re-
flective markers. Their aim was to create a ”point and click”
user interface for a large display. Three different pointing

2.3 Post-desktop interaction 23

and two clicking gestures were implemented and evaluated
in their work. Because they observed high error rates in
absolute pointing techniques, they recommend techniques
that use relative pointing and a clutch for freehand point-
ing. Freehand pointing can easily be transfered to be used
as a focus technique in an Interactive Workspace.

Figure 2.7: Absolute freehand pointing. Taken from [Vogel
and Balakrishnan, 2005].

Wilson and Shafer ’s XWand project [Wilson and Pham,
2003] uses accelerometers and magnetometers to track the
position and the orientation of a wand-shaped device (see
Figure 2.8). Furthermore, Wilson and Pham introduced the
WorldCursor, a ceiling mounted laser pointer that provides
feedback of the current position [Wilson and Pham, 2003].
In their project, the XWand is used as a primary input de-
vice to interact with an environment. For example, one can
turn on a light by pointing the XWand to it and push a but-
ton. It is also possible to interact with a display: when a
user moves the projected laser spot onto a display, it turns
to a cursor.

2.3.3 Multimodal interfaces

Often speech and gesture are combined to make sense of
the users’ focus. [Siracusa et al., 2003] showed how to com-
bine video and audio cues to determine who is talking and
to whom she is speaking to. [Stiefelhagen et al., 1999] in-
troduced a similar approach which also applies speech and
camera images. Although the intention of these technolo-
gies is to support automatic capture of meetings, we believe

24 2 Related work

Figure 2.8: XWand - a pointing device with integrated
tracking sensors. Taken from [Wilson and Shafer, 2003].

that this technique can also be used for redirecting voice in-
put similar to what has been done by Bolt in [Bolt, 1980].

2.3.4 Eye-Tracking

[Kaur et al., 2003] showed that humans fixate an object be-
fore interacting with it through speech commands. Instead
of pointing to a device for activation we can use eye-input
to focus devices.

[Vertegaal et al., 2005] demonstrated some devices that can
track whether they are being attended. A device knows that
a user intends to use it, when it is fixated by her eyes. To
enable a device to see whether someone is interested in us-
ing it we can attach eye-contact sensors to them (see Figure
2.9). Such devices are called EyePliances.

When a user looks at the device, an EyePliance opens a
communication channel to the user. It is important to men-
tion that eye-inputs are only used to build up a commu-
nication channel with a device. The primary task still has
to be solved by exchanging data over this communication

2.3 Post-desktop interaction 25

Figure 2.9: A device that can sense whether one looks at it.
Taken from [Vertegaal et al., 2005].

channel.

2.3.5 Continuous tracking techniques

As we have seen in some projects with multi-modal and
speech interfaces, eye inputs, the posture of the head, and
the direction of speech are all information that can describe
the context in an interactive room. We can use these inputs
to infer the current task of a user. Thereafter the system can
change the input management for the user implicitly. No
active involvement of the user is required.

[Brumitt et al., 2000] gives an example that uses positional
information to determine the event route.

Often an intelligent component is needed to resolve the
user’s intention. Much research in the field of artificial
intelligence deals with this problem as well [Isbell et al.,
2004]. However, as stated in the introductory part, we do
not concentrate on this type of techniques in this work.

27

Chapter 3

Theory of focus

“A theory is something nobody believes, except
the person who made it. An experiment is

something everybody believes, except the person
who made it.”

—Albert Einstein

The word ”focus” has many different meanings across dif-
ferent scientific fields. Physic scientists use the word in
a different way than a psychologist, mathematicians, the-
ologians, linguists, communication scientists, or computer
scientists. However, all the different meanings share one Convergence
property: they describe something that converges into a
single entity.

Another property that is important to the following discus-
sion is taken from the definition of communication science
which is the dynamic character of focus. During a dialogue Frequent change
the focus of conversation undergoes a continuous change
[Grosz, 1978].

In the field of computer science, according to [Brockhaus,
2002], ”focus is a special semaphore, that is assigned to
a window being activated”. Furthermore, ”in a graphi-
cal user interface[...], an active window is the window, on
which the cursor resides. All inputs and actions refer to the
content inside this window.” As one can see, this definition WIMP interpretation

28 3 Theory of focus

is closely grounded on assumptions made with the WIMP
metaphor in mind [Chignell and Waterworth, 1991]. For
the approaching age of post-desktop computing this defi-
nition needs to be extended.

3.1 Focus in traditional desktop environ-
ment

The support of multitasking contributes largely to the pop-
ularity of today’s desktop environments. Users can switch
among active applications by moving the cursor and click-
ing on their visual representation. Input from the keyboard
will be redirected to the active application. This applica-Focus on traditional

desktop
environment(TDE)

tion becomes the focus of the keyboard; a routing channel
is established between the keyboard and the application.
Within the GUI of each application there are multiple wid-
gets. They also form a different level of focus. One can
specify the active widget by clicking on its visual represen-
tation (e.g., an URL-addressbar or a textfield). This exem-
plifies the so-called Focus-on-Click policy (see Figure 3.1)

File Edit Window File Edit Window

File Edit Window

File Edit Window

File Edit WindowFile Edit Window

1

3

2

Figure 3.1: Focus-on-Click focus policy.

Another focus policy is the Focus-follows-Mouse policy.
With this policy every time the cursor enters the boundaries
of a window, the window becomes active. No explicit click-
ing is necessary (see Figure 3.2). The Sloppy-Focus pol-Focus techniques for

TDE icy is similar to Focus-follows-Mouse, but it differentiates
the root window from application windows, see [Hioreanu,

3.2 Focus in Interactive Workspace 29

File Edit Window

File Edit WindowFile Edit Window

1 2
File Edit Window

Figure 3.2: Focus-follows-Mouse focus policy.

2002]. This shows that even in the traditional desktop there
are different techniques to manage input.

Internally it is the window manager which determines
which window should receive an event. It keeps track of
the active window and change the focus by reordering reg-
istered windows. All windows have an order assigned by
the window manager; this order is often referred to as the
Z-order [Baudisch and Gutwin, 2004]. Although the im-
plementation of their internal structure can vary from win-
dow manager to window manager, all window managers
can determine the window that is the current focus of the
system.

3.2 Focus in Interactive Workspace

To determine the focus on a single-user desktop the active
window is the only information required. All inputs are Focus in Interactive

Workspace(IW)generated by a single user and sent to this window.

In an Interactive Workspace however, we need more infor-
mation to describe an event route. [Ballagas et al., 2003]
points out five key differences when comparing Interactive
Workspaces with a traditional desktop: 5 M’s paradigm

• Multiple users.

• Multiple machines.

• Multiple input devices.

• Multiple output devices.

30 3 Theory of focus

• Multiple applications.

This corresponds to [Wasinger et al., 2003]’s analysis which
states that an Interactive Workspace consists of: devices,
users, and services. All in all, the key idea to keep in mind is
that devices should not be strictly coupled to any computer.
They should become part of the room as a whole.

In an Interactive Workspace, each user is associated with a
set of tuples that we define as the Focus Space:Focus Space(FS)

{(u, i, m, o, a, w) |
u ∈ U, i ∈ I, m ∈ M,o ∈ O, a ∈ A,w ∈ W},
where
U is the set of all users
I is the set of all input devices
M is the set of all machines in the room
O is the set of all output devices
A is the set of all applications
W is the set of all widgets

Figure 3.3 shows the information that such a Focus Space
delivers.

Each Focus Space consists of tuples that have five compo-
nents. They identifyEvent route as tuple

• which user a tuple belongs to,

• which input device she is using,

• to which machine the event is redirected to,

• from which device the user is expecting a response,

• which application is processing the input event,

• and which widget reacts to the input.

Our model is organised as a set to allow concurrent input.
Using a sequential list prohibits multiple users to input at

3.2 Focus in Interactive Workspace 31

Bob

{(Bob, Knob, Bob's desktop, Display A, DVD player, Timescale),
(Bob, Joystick, Sever for audio, Loudspeaker #2, Loudspeaker's

volume)}

Figure 3.3: If Bob is the owner of these two tuples, then
he can use his knob to control the time scale of a media
running on Bob’s desktop. At the same time he can use a
joystick to control the volume of loudspeaker #2.

the same time. The system would have to apply a turn tak-
ing strategy to manage inputs from multiple users.

With the proposed model multiple users can be in the
same room and work independently. They can also join
and work together when needed. This gives the system a
greater flexibility.

32 3 Theory of focus

3.3 Shifting focus

In desktop systems, we change the active window to shift
our focus; in Interactive Workspaces we modify its focus
space.

According to Wasinger’s analysis in [Wasinger et al., 2003]
the control of a device can be: allocated, shared, or released.Allocate, share,

release A user allocates the control of a device when she wants
her input to be directed to it. A user shares her control for
collaboration (e.g., sharing a display with multiple users).
Finally, a user releases the control of a device when she ter-
minates its use.

Thus there are three types of modification for a Focus
Space:

• When a user allocates the control of a device, a new
tuple is inserted into the focus space. Example 1 in
Table 3.1 shows how Bob’s keyboard input will be
redirected to the TextEditor on a machine with the IP-
address 137.226.53.64.

• Sharing control is a more complex topic than allocate
and release: the system does not only has to reconfig-
ure routing channels, it also has to synchronise infor-
mation between the shared control. When a device is
shared, the Focus Space contains more than one tuple
that share the same component. Example 2 in Table
3.2 shows how Jim can use the keyboard #2 to assist
Bob.

• When a user releases the control, a tuple is removed
from the tuple space. Example 3 in Table 3.3 shows
resources are freed from Bob’s control.

A more detailed table1 with storyboards shows different
interactions the Focus Space can describe. Using this
model we can classify existing interaction for Interactive
Workspaces and identify gaps for further research.

1http://media.informatik.rwth-aachen.de/∼yu/thesis/index.html

http://media.informatik.rwth-aachen.de/~yu/thesis/index.html

3.4 Tuple construction 33

Example 1 Focus Space
Before allocation {}
After allocation {(Bob, Keyboard, 137.226.53.64, Plasma display,

TextEditor, TextField)}

Table 3.1: Focus Space modification: the system allocates the devices fro Bob by
inserting a tuple into the Focus Space.

Example 2 Focus Space
Before sharing {(Bob, Keyboard #1, 137.226.53.64, Plasma display,

TextEditor, TextField)}
After sharing {(Bob, Keyboard #1, 137.226.53.64, Plasma display,

TextEditor, TextField),
(Jim, Keyboard #2, 137.226.53.64, Plasma display,

TextEditor, TextField)}

Table 3.2: Focus Space modification: the plasma display is non-exclusively shared
by Bob and Jim.

3.4 Tuple construction

When a user requests for the control of an output device,
a tuple will be put into the focus space. Her input will be Assumptions to

decrease complexityredirected to this device. Before a tuple is inserted into the
focus space, users need to create this tuple in the first place.

We have seen that each tuple consists of multiple compo-
nents. The specification of each component yields an ex-
tra action cycle. Thus six additional steps are needed be-
fore a tuple and its according event channel is created. This
clearly contradicts to the requirement of focus methods to
be fluid and transparent and poses a great challenge to any
implementation of a fully flexible Interactive Workspace.

To get around this problem the context of the Focus Space
can be preserved and only part of the Focus Space needs to
be changed on a focus transition.

In many existing systems, the specification process is sim-
plified due to various assumptions a system made. Here
are two examples:

Desktop. A desktop system assumes that it is operated by a

34 3 Theory of focus

Example 3 Focus Space
Before release {(Bob, Keyboard, 137.226.53.64, Plasma display,

TextEditor, TextField)}
After release {}

Table 3.3: Focus Space modification: when a tuple is removed, the devices allocated
are free again. Their control are released.

single user with a fixed set of devices. It also shows its out-
put on a single screen. Thus the user only needs to specify
the application or the widget she wants to control. Further,
there is no need to specify the application, if a user selects
a widget, because every widget belongs to a single applica-
tion.

ARIS. The ARIS system mentioned in chapter 2 assumes
that each user brings their laptop along and interact with
the room’s display through these laptops. Thus each user
has a fixed set of input devices which is the keyboard and
the mouse of their laptops. Further, each display is con-
nected to a single machine. As a consequence, a user only
needs to choose the display, on which she wants to interact
with an application.

The specification of these components share a similar pat-
tern. We can divide the interaction into three steps:
recognition, indication, and selection (see Figure 3.4).3 steps model

Recognise Inidicate
Select

Figure 3.4: 3-steps-model consists of: recognition, indica-
tion, selection.

3.4 Tuple construction 35

3.4.1 Recognition

The system has to inform users which device can be used
in the current context by distinguishing them from non- Recognition
interactive ones. It either provides this information actively
or replies upon a user’s request. This information can be
transmitted using different modalities. They can be tactile,
visual, or auditive.

In addition, Interactive Workspaces can provide cues that
are in the physical world. For example, we can give devices
a certain colour or we can attach labels, tags, or LEDs to
them.

Visible windows represent the selectable applications on a
desktop. There is an active visual feedback. However, if a
window is covered, the specification of a component breaks
down. Exposé [Apple Computers, 2003] solves this prob-
lem by resizing and rearranging selectable windows in a
way such that all of them are visible (see Figure 3.5).

3.4.2 Indication

When a user indicates a certain device, she informs the sys-
tem about which device she would like to control. The sys- Indication
tem updates what it thinks the user is referring to.

This operation corresponds to the same elementary opera-
tion that Raskin suggested in [Raskin, 2000]. According to
Raskin’s description, users indicates an object by moving a
cursor to point to a single object without any other action.
We can also consider indication as an act to inform the sys-
tem about the locus of attention[Raskin, 2000] of a user. In
Interactive Workspaces this act of referencing can use gaze,
gesture, or spatial information of users to indicate an object.

Further, indication depends on how the targets are struc-
tured. If we navigate through a map such as in the ARIS
project, we navigate in a two-dimensional space. If we
point to an object in the real world, the devices are organ-
ised in a three dimensional space.

36 3 Theory of focus

Figure 3.5: Exposé resizes and orders all application win-
dows. The users can recognise selectable applications.

3.4.3 Selection

Users consciously submit a request to change the Focus
Space to confirm that the indicated object should become
focused. It is comparable to the ”activate” operation inSelection
Raskin’s set of elementary actions, although it has another
semantic in our context. Such a request can be triggered by
pressing a button, releasing a button, or producing a voice
command. Upon a successful transition the focus of the
system is synchronised with the user’s locus of attention.

3.5 Implicit and Explicit focus techniques 37

3.4.4 Feedback

Each of the three steps mentioned above can provide dif-
ferent feedback. It is important to make the following in- Feedback
formation clear to users:

• What devices are available?

• What device a user is referring to?

• Was the transition of focus successful?

Take for example a desktop environment that applies the
Focus-on-Click policy:

• Visible windows show what application can become
the activate window.

• The window, on which the cursor is floating above, is
the indicated window.

• If a window becomes active, the system brings that
window to the front.

If the system does not provide appropriate feedbacks for all
of the 3 steps, the interaction will break down. For exam- Break down
ple, if a user is working from afar and cannot clearly see
where the cursor is, she does not know where the cursor is
pointing to; changing the active window becomes difficult.
Another example that shows a breakdown in the last step:
if the window does not pop up to the front when activated,
users do not know whether the focus has been changed.

3.5 Implicit and Explicit focus techniques

As described in chapter 1, there are implicit and explicit fo-
cus techniques. Implicit methods differ from explicit tech-
niques in that users do not explicitly take action to change
the focus. The configuration is managed by the system. It

38 3 Theory of focus

keeps track of users’ behaviour while they solve their pri-
mary task. The system infers the appropriate settings based
on the data collected and reconfigure the input manage-
ment automatically.

In terms of the 3 steps model indication and selection be-
come a single step. For example, using the focus-follows-
mouse policy, when a user moves the cursor to indicate herImplicit focus

technique window of interest, it becomes the active window without
an additional step to click on the window. Similarly [Bru-
mitt et al., 2000] uses the spatial information, and [Fono and
Vertegaal, 2005] uses eye-input to infer what a user is indi-
cating.

Compared to explicit techniques implicit techniques may
have a lower cognitive load and are more transparent for
users. The focus task is left to the system, so that users can
concentrate on their primary tasks.

However, implicit technique suffers from inaccuracy. One
source of error is the misinterpretation of focus. In
[Kaowthumrong et al., 2002] only 75- 85 percent of sys-
tem’s prediction are correct. Another source of error is
the system sensitivity: when a user accidentally moves the
mouse away or when a user looks away for a short time, the
system immediately reacts to these unintended indication.
Users are likely to find these unintended focus changes
frustrating or disturbing.

3.6 Distant interaction

Interactive Workspaces offer many ways to use their equip-
ment. In some scenarios users may change their position
frequently and walk around in the room. In other scenarios
they work from where they are sitting. In these situations itDistant interaction
may be disturbing, if users have to stand up and walk to the
devices to set up event routes. Thus the room has to pro-
vide interactions that can bridge the spatial gap between
users and devices, which are often spatially scattered in the
room.

3.6 Distant interaction 39

This problem is related to multi-display reaching. In the do-
main of focus techniques we deal with the question: ”How
can I send my inputs to that device?” In the domain of
multi-display reaching we ask: ”How can I move a digi-
tal object from this device to that device?” Their common
property is the reference of a device. Nancenta has done
a thorough comparison of several techniques for the latter
domain in [Nacenta et al., 2005]. Some factors he identi-
fied for the multi-display reaching techniques also apply to
focus techniques.

Topology of the environment
[Nacenta et al., 2005] refers topology to the way the phys-

ical space and its virtual conception is related. During the
indication step users navigate through a space of selectable
items. This space is formed by the virtual conception of
how the selectable objects (in our case, they are devices) are
organised. The structure of this space can be seen as an at-
tribute of a focus technique.

This space can be one-dimensional (e.g., a list), two di-
mensional (e.g., a top-bottom map), or three dimensional
(e.g.,referring to items in a virtual reality or the physical
world). It can also be discrete or continuous. The naviga-
tion though this space can be absolute or relative.

Range
Every interaction has an effective reach range. Suppose we
have a setting in which users are working around a shared
table, [Nacenta et al., 2005] identified three ranges to trans-
fer content: within hand’s reach, beyond hand’s reach, and
discrete points in the periphery. Adapting this classification
to our problem this means that we can touch and manipu-
late devices that are within hand’s reach, using our hands or
fingers.

But if they are beyond hand’s reach, users have to walk to
those devices or they need to apply other techniques to
move the devices close to them.

Users can also refer to a distant device directly. For that,
they need a technique to specify the direction they are
pointing to.

40 3 Theory of focus

Accuracy and resolution
Focus techniques can be compared regarding to their error
rate. We have seen that explicit focus technique is more ac-
curate then implicit one, this is because implicit techniques
can falsely change the focus.

Explicit focus techniques can also produce errors. Some ex-
plicit focus techniques use pointing in the indication step.
[Myers et al., 2002] reported different error rate depending
on the pointing technique used.

Feedback
The importance of feedback has already been mentioned in
section 3.4.4. Feedback can be implemented with different
modalities in different ways. Since the same technique can
have different type of feedback, it opens a further dimen-
sion to vary during the design of a focus method.

Focus Device
There are focus techniques that do not require any device

to operate (e.g., freehand pointing or eye-input). But if one
is needed (e.g., a wand, a mouse, or a microphone), its er-
gonomic factors effect the overall experience. It might in-
troduce extra time to switch among devices.

Frequency of Change
From the results of our experiments we identified this qual-
ity as a further dimension to consider. If the settings in the
room is changed frequently, users will prefer a fast and ac-
curate focus technique. If the room just needed to be set
at the beginning of a meeting, users are probably willing to
use techniques with a higher effort (e.g., the Touch-to-Focus
technique in chapter 4) to solve the focus task.

Number of Devices
The number of devices is also relevant for the design of

focus methods. If we have a large number of devices, they
have to be organised, so that users can identify what they
need easily. Thus this attribute is closely related to how to
design the topological structure for a focus technique.

3.7 Focus methods 41

3.7 Focus methods

In this section we present five categories of focus tech-
niques that coarsely classify available techniques. We point
out their characteristics and different possibilities for im-
plementation.

Pointing techniques
This class of focus techniques uses a virtual directional ray
to refer to a device of interest. We can use wand-shaped de-
vices, laser pointers, handheld cameras, or head-mounted
cameras to afford a directional ray. If it is required that
users’ hands are not occupied, we can also use freehand
pointing. Pointing using hands is in general not reliable
because it is hard for a human’s hand to stay steady. It is
natural that a human’s hands produce sudden movements
with a small amplitude, however the effect is amplified be-
cause of the distance a ray has to travel. As a result, users
often miss the target when they use hands to point to a dis-
tant object. This problem is often referred to as the hand
jitter problem. Beside using hands we can also use our eyes
or the direction of our head to specify a direction.

Speech interface
If an Interactive Workspace is equipped with microphones
that cover the entire room, users can control the room from
any location such as in MIT’s Intelligent Room [Brooks,
1997]. If the system have to differentiate multiple users,
each of them can use a personal microphone to access ser-
vices in the room. This class of techniques does not occupy
users’ visual channel. No additional device is required for
these techniques. Thus users’ hands can remain on their
input devices and continue with their primary task.

ID-based techniques
To overcome the spatial gap between device and user, we

can assign ”proxies” to each device. Suppose these proxies
are within hand’s reach, we can select these proxies instead
of the real device. For examples, RFID tags or visual codes
can be used this way. This technique becomes hard to re-
alise if the amount of devices is large. It will become hard
to search for the required proxy. It will also be hard to dis-
tinguish one proxy from another.

42 3 Theory of focus

List-based selection
This class of focus techniques structures available items as

a list. In the indication step user navigates through a one di-
mensional structure. Thus we only need three commands
to implement this technique: ”forward”, ”backward”, and
”select”. To implement these commands we can use keys,
voice command, or freehand gesture. Although this tech-
nique is easy to implement, it breaks down, if the list is
too large. A way to diminish this problem is to use differ-
ent logical ordering. If the system uses visualisation tech-
niques to tell users what devices are available, we can use
a different ordering to show available devices are, we can
also filter out distractors so that the desired target is easier
to identify.

Context-based techniques
We denote Context-based techniques as those that use im-

plicit input to redirect events in Interactive Workspace.
From the hardware point of view we need a tracking sys-
tem has to be installed to capture data such as position,
gaze, body-posture. Cameras and computer vision tech-
niques are often used. Further, we need software that make
sense out of these data. Implicit techniques can be made
explicit by introducing an explicit selection step. For exam-
ple, we can use a voice command, a button or a gesture as
triggers for a focus transition.

GUI based techniques
We will call focus techniques that requires display GUI

based focus techniques. They cannot be operated without a
display. Desktop, laptop, or PDA are often used to provide
one. For example, the World-in-Miniature technique needs
a display to show the miniaturised map of the room.

43

Chapter 4

Prototyping Interactive
Workspace

“Our thoughts create our reality – where we put
our focus is the direction we tend to go.”

—Peter McWilliams

In chapter 3 we saw that focus involves the selection of mul-
tiple entities at different levels. Those are input devices,
output devices, machines, applications, and widgets.

The traditional desktop environment provides techniques
to activate applications and widgets. The PebblesDraw
application demonstrates a technique to connect input de-
vices with an application (see chapter 2).

We do not consider the selection of machines, because ma-
chines should be transparent for the users. Users inter-
act with machines through input devices and output de-
vices. Often the reference to a machine is mostly given only
through its output devices. Therefore we consider in our
experiment output focus techniques.

Our aim is to keep interactions simple so that people will
use it. We can use physical interactions to achieve this, be-
cause they are more intuitive, natural, and make the tech-
nology less intrusive and more transparent.

44 4 Prototyping Interactive Workspace

Further, we make the following assumptions to reduce the
complexity of our experimental settings:

• Displays and machines have a 1-to-1 relationship.
We will use the terms display and machine synony-
mously.

• All output devices have the same type, in our settings
we will redirect inputs to plasma displays.

• We emphasise on focus techniques at the level of out-
put devices. We can apply focus-on-click to select ap-
plications.

• Our system does not support multiple users and im-
plicit information based techniques. To prototype
these features we would need tracking technology to
be installed or a testbed with multiple wizards.

• Users do not need a personal computing device such
as a PDA to interface with the room.

4.1 MediaSpace

To explore the performance and acceptance of different fo-
cus techniques, we applied the MediaSpace[Borchers, 2006]
to prototype different interactions. The MediaSpace is a
room with a length of 7.4 metre and a depth by 6.4 metre.
It is located at the RWTH computer science building on the
second floor in room 2212.

This room is designed for group meetings, video confer-
ences, project demonstrations, and presentations.

To maintain multiple functions in the room, all furnitures
are mobile. Tables, chairs, and even large plasma screens
can be rearranged as needed.

The atmosphere in the MediaSpace is light and spacious. It
does not have a dark and cinematic atmosphere as in Stan-
ford’s iRoom because large windows are installed on one
side of the room (see Figure 4.1).

4.1 MediaSpace 45

Figure 4.1: The MediaSpace at RWTH Aachen.

For our experiments, we use three touch sensitive plasma
displays. When a user is working on one display, the other
two are out of her visual field, so that the displays make use
of the 3-dimensional space and do not imitate a large wall
display. Each of them is connected to a notebook running
Apple’s OS X 10.4 operating system (see Figure 4.2).

We use a keyboard, a gyro mouse, a laser pointer, and
a head-mounted microphone as input devices (see Figure
4.3).

A gyro mouse is a relative pointing device. It tracks the
movement of the hand using gyroscopic sensors and can be
considered as a extension of the traditional mouse into the
third dimension. Thus users do not need a surface to op-
erate on but can carry it around. To move the cursor users Gyroscopic mouse
need to press a clutch. In this experiment we use the Gy-
roRemote produced by Gyration.

46 4 Prototyping Interactive Workspace

Figure 4.2: The layout of plasma displays in MediaSpace.

4.2 Infrastructure

The iROS software is a TCP and JAVA based middleware
that acts as a blackboard for events. It provides the means
for devices and applications to communicate with each
other. Each event is structured as a tuple. The machineTuple-based

middleware that manages these events is called the Event Heap server.
Every user, machine, and application can generate and post
events to the Event Heap. We use an Apple G5 desktop ma-
chine with Dual-core processors to run this software.

Applications that are interested in a certain type of event

4.2 Infrastructure 47

1

2

3

4

Figure 4.3: Input devices that we used: 1) gyro mouse, 2)
wireless keyboard, 3) laser pointer, and 4) head-mounted
microphone.

can subscribe and listen for them. Although every machine
in the room still runs a standard operating system, they are
all connected to each other by the Event Heap (see Figure
4.4). So they do not need an operating system that is exclu-
sively designed for the room.

We created a suite of programs that listen for keyboard- and
mouse-events on the Event Heap and use the java.awt.Robot
object to emulate local inputs. Thus we give users the feel-
ing of remotely controlling a machine with their keyboards
and mice.

For our experiments, we also need functionalities at system
level, such as reordering of windows and a speech syn-
thesiser. Mac OS X offers a language called AppleScript
to communicate directly with these services. Therefore we
also run an AppleScript proxy on each machine that is con-
nected to a plasma display.

48 4 Prototyping Interactive Workspace

Event Heap Patch
Panel

Event type Key intput
key "a"

Event type Key intput
key "a"

Target screen

2

4

5

3

1

Figure 4.4: 1) Input devices generates input events, 2) Input
events sent to the Event Heap, 3) Some events are translated
by the Patch Panel, 4) The Patch Panel sends the translated
event back to the Event Heap, 5) Event from the Event Heap
will be processed by a device.

4.2.1 Patch Panel

As shown in Figure 4.4, a software called Patch Panel is
responsible for event redirection. It is an Event Heap client
that does not only listen for events, but also emit events.

For the Patch Panel, there are incoming and outgoing
events. A mapping configuration defines the translation
between incoming and outgoing events. When an incom-
ing event that is defined by the Patch Panel’s mapping ar-
rives on the Event Heap, an outgoing event is emitted byEvent translation

4.3 Patch Panel script 49

the Patch Panel. Thus a mapping configuration defines
how the Patch Panel translates events.

Moreover, this mapping can be changed by an incoming
event as well. Such an event changes the active event-
mapping configuration of the Patch Panel. We can call this
type of events mapping-redefinition events.

Because of this dynamic behaviour, we can see the Patch
Panel as a state machine, where the active event-mapping
defines the state, and the mapping-redefinition events de-
fine the translations. All possible event-mapping will span
the state space.

To emulate focus techniques, we can use the Patch Panel to
implement the Focus Space model, where each tuple in the
Focus Space corresponds to a subset of the event-mapping. Focus Model

implementationTo change this Focus Space, a focus technique generates an
event that is sent to the Event Heap. If this event is recog-
nised as a focus control event by the Patch Panel it will emit
a focus event. As a mapping-redefinition event, this fo-
cus event changes the current event-mapping, thus alter-
ing one or more tuples encoded in the event-mapping. As
described in chapter 3 this yields a change of focus.

To give the Patch Panel the ability to recognise focus control
events, we have to assign an initial behaviour to the Patch
Panel at the first place. Currently, there are two interfaces to
do this: we can configure the initial mapping with a GUI or
a scripting language. Since we have to program a complex
behaviour, we use the scripting language to configure the
initial Focus Space.

4.3 Patch Panel script

During the development of the testbed, we have identified
some shortcomings within the original Patch Panel script-
ing language.

Firstly, it does not fully cooperate with AppleScript events.
For example, escape characters are misinterpreted. This

50 4 Prototyping Interactive Workspace

prevents us from using the tabular or the line break char-
acter. Therefore Patch Panel cannot handle complex scripts
using the AppleScript scripting language.

Secondly, the original parser does not provide any informa-
tive error feedback. This results in a high effort in finding
errors and makes the debugging of scripts very difficult.
While browsing through the source code of the parser, it
turns out that the parser’s code is hard to understand be-
cause parsing and interpretation of scripts is mixed.

While the Patch Panel example scripts compile within 3 to
4 seconds, the script for the experiments needs 30 seconds.
This underlines the complexity of the script that will be
used. As a consequence, it is necessary to introduce a newNew parser needed
scripting language for the Patch Panel and a new compiler
for this language.

To achieve a higher clarity and to make the language eas-
ier for future researchers to customise, we use an automatic
parser generator called SableCC1 . We define the grammar
of the scripting language in a BNF-styled language. Then,
SableCC generates a set of classes that form the abstract
syntax tree.

To interpret the script, one has to implement a class that tra-
verses though the abstract syntax tree and sets the internal
state of the Patch Panel. The definition of the new Patch
Panel scripting language is documented in appendix A.

Benefits of the new language:

• Programmers can use comments that span multiple
lines.

• Programmers can use timers with different names to
create time dependent triggers.

• Definitions of variables and events are not restricted
to the beginning of the script.

• Switch statements have a more powerful syntax.

1http://sablecc.org/

http://sablecc.org/

4.3 Patch Panel script 51

These points are implemented in an attempt to make large
Patch Panel scripts easier to read and to maintain. Allow-
ing multiple line comments makes it easier to provide doc-
umentation for scripts and to comment out parts of a script
for faster modification.

Each script defines a state machine. With the new language
we can define variables and events at arbitrary locations in
a script. If an event or a variable is relevant only to a certain
state, we can define them in the scope of this state.

A common usage of Patch Panel is to trigger a discrete
event when a continuous variable crosses a threshold or
enters a certain range. With the modified script language
we can define switch statements as Table 4.1. A continu-
ous variable is often translated into a discrete trigger when
the value is within a certain range. The style of progam-
ming shown in Table 4.1 allows users to define ranges and
behaviours for multiple cases easily.

switch float (sliderValue){
case 0.0:
case (3,4]:{

send turnLightOn;
}
case (4,5]:{

send turnLightOff;
}

}

Table 4.1: Example of a switch statement

4.3.1 Future improvements

The ability to hide details is essential to implement a pow-
erful language. The Patch Panel would become more pow-
erful if behaviours inside a trigger can be encapsulated and
reused throughout the script. Currently, each Patch Panel
script implements a state machine. If we extend the def-
inition to a state chart, we can define more complex be-

52 4 Prototyping Interactive Workspace

haviour. With the current Patch Panel we can simulateState charts?
state charts by running multiple scripts in parallel; how-
ever, these scripts cannot share common variables.

As described earlier, Patch Panel is responsible for event
redirection by attaching a destination field to incoming
events. If the Patch Panel translates an event into another
event with the same type this translated event will also trig-
ger further creation of events of the same type. In this way
one single event can trigger a large amount of events. Al-
though the Patch Panel contains mechanism to avoid an
event to reside on the Event Heap permanently, it still puts
a heavy load on the network, making the infrastructure un-
usable. To solve this problem, we can

• improve the event matching mechanism. The cur-
rent implementation allows Event Heap clients to lis-
ten for events that have certain fields. To solve the
problem mentioned above, we can allow an Event
Heap client to listen for events that do not have cer-
tain fields.

• attach a field that marks the level of process, deter-
mining whether a low level event is generated by a
device or a high level event destined for an applica-
tion.

4.4 Interaction with the testbed

To capture the performance and acceptance of focus tech-
niques we conducted a series of within-subject experi-
ments. The independent variable in these experiments is
the variation of output focus techniques.

4.4.1 Primary Tasks

Our requirements for the primary tasks are as follows:Primary tasks
requirement

• Tasks should cover the use of all input devices.

4.4 Interaction with the testbed 53

• Tasks should correspond to interactions in real sce-
narios.

• Tasks should cover as many modalities as possible.

• Tasks should simulate a natural usage of an Interac-
tive Workspace.

In all experiments each subject has to solve four different
types of task on three displays:

• Type in a URL address into the browser.

• Move the cursor to a given position.

• Word repetition.

• Search for a significantly different frame in a video.

In the first task we showed a URL at the title bar of the
browser’s window. Users’ task was to open the website
with the URL shown in a browser. The URL was chosen
randomly from a set of valid URL addresses. To enter the Key inputs
URL into the address bar, the subject used the gyro mouse
to click on the address bar and the keyboard to generate
keyboard events.

In the second task a user saw a golf ball and a hole. Her goal
was to move the ball onto into the hole. The ball followed
the cursor when it was moved. Each time the initial posi-
tion of the golf ball and its target position were randomised. Cursor movments
The user should use the gyro mouse to perform this task.
With this we covered the modality of gesture movements.

An audible word was generated by the speech synthesiser
for the third task. The user solved this task by repeating the
word aloud. Both stimulus and response require auditive Audio task
mental resources.

A clip was presented to the user in the fourth task. This
clip contained several subsequent frames that were signifi-
cantly different than the rest. The differences were the not
described beforehand. Users were instructed to use a slider
to search for the position of these frames. Unlike the tasks Search task

54 4 Prototyping Interactive Workspace

described before, this task requires more interaction cycles
to complete and puts a higher strain to the users’ attentional
resource.

4.4.2 Procedure

After introducing the MediaSpace and all the hardware to
the subject, we showed her different coloured icons (see
Figure 4.5). We explained their meanings: the colour in-

1

2

3

4

Figure 4.5: Examples of instruction icons: 1)word repetition
on red display. 2)scene search on blue display. 3) URL entry
on green display. 4) move cursor on red display.

dicates which display they should select and the type of
icon indicates the primary task they should solve. Then we
demonstrated how each primary task is solved on a single
machine.

For each trial the subject applied a different output selec-
tion technique. Also each subject had a different order, in
which she applied the methods. We permutated this order
for each user to eliminate the learning effect.

Before a subject started a trial, we demonstrated the focus
method to her and gave her enough time to get familiar
with the technique.

Each trial consists of 16 cycles which have the following
steps:

4.4 Interaction with the testbed 55

1. We instructed the subject by showing her a coloured
icon on all displays.

2. The subject applied the assigned output focus tech-
nique according to the colour of the icon.

3. Then she chose the application she needed to solve
the primary task she was instructed to solve.

4. The user worked on the primary task.

After each trial we gave the subject a questionnaire to fill
in.

In each cycle, the subject needed to focus on a different out-
put device. This justifies the number of displays we use. If
we had used two displays the subject could have predicted
which display would have been the next. She would not
have waited for the instruction to appear. Then we would
not have has a reliable starting point to measure the time
needed to complete the focus task.

4.4.3 The Wizard

Our experiment settings also require a wizard, who has
three tasks:

1. He controls the input management of the room, em-
ulates focus technique by observing the subject’s be-
haviour and then changes the room’s setting accord-
ingly.

2. When unexpected behaviour occurs, he makes notes
about it by adding comments to the log file.

3. He also determines whether the subject has com-
pleted a primary task. When the primary task is done,
the wizard shows the subject another instruction icon
and starts measuring the focus time.

A GUI application assists the wizard in these tasks (see Fig-
ure 4.6). The wizard can manage the input by moving the

56 4 Prototyping Interactive Workspace

Figure 4.6: Wizard’s interface to control event redirection.

mouse. When the escape key is pressed, a new instruction
screen appear on all displays; a timer starts to measure the
output focus time.

4.4.4 Quantitative metrics

PRIMARY TASK TIME:
The time a subject needs to complete the primary task.
Its measurement starts when the target application is se-
lected.

Definition:
Primary task time

OUTPUT FOCUS TIME:
An instruction icon informs the user which output de-
vice should be used. The output focus time defines the
interval between showing this icon and the selection of
this output device, see Figure 4.7.

Definition:
Output focus time

4.4 Interaction with the testbed 57

APPLICATION FOCUS TIME:
An instruction icon informs the user which application
to use on an output device. The application focus time
defines the time between output device selection and the
selection of target application, see Figure 4.7.

Definition:
Application focus
time

t
Focus time

Output focus time
Application focus time

Primary task time

Figure 4.7: Output focus time is the parameter that we will
measure.

We are interested in the time that a focus technique takes,
so the primary task time is not measured in our settings.

With the procedure described above we start the measure-
ment upon showing the icon. This also includes the time
a user needs to interpret the icon, but since the icons are
self-explanatory and easy to understand, we claim that the
time for interpretation is constant throughout all trials and
subjects.

However, the time that we measured can only be used to
compare focus techniques. It does not characterise the per-
formance of each technique. It includes time to recognise,
indicate, and select the target display.

59

Chapter 5

Preliminary testing

In this preliminary test we compare following output focus
techniques:

• Pointing with a laser pointer

• Pointing with a finger

• Pointing with an input device

• Focus-by-Gaze

• Touch-to-Focus

With this experiment we would also like to uncover errors
in our testbed, so that we can refine our method incremen-
tally.

5.1 Focus technique

The three different pointing techniques differ in the way
how they specify a virtual ray.

For the first technique, we used a laser pointer to send a
ray and a solar cell to sense this ray. As described in section
3.7, it is hard to absolutely point to an area with the laser

60 5 Preliminary testing

pointer because of the hand jitter problem (also see [My-
ers et al., 2002]). We try to avoid this problem by explicitly
instructing the subjects to sweep across the solar cell as if
someone would use a pen to check a checkbox.

There are also different ways to specify a virtual ray using
the finger: we can consider the ray between the eyes and
the tip of the index finger, we can use the index finger itself
to cast a ray, or we can extend the arm’s direction. For our
experiment, we choose the first option.

To keep the comparison fair, we emulate all techniques with
the Focus Wizard’s GUI, i.e., the input management is trig-
gered by the wizard.

Wizard controlled techniques
Techniques that are not yet fully implemented can be em-

ulated with the wizard’s help. Beside controlling the task
flow, the Wizard also manages the input redirection for
them. The GUI that the Wizard used is described in section
4.4.3.

System’s feedback
As stated in section 3.4.4, we can provide feedback in dif-
ferent modalities. In this experiment we use visual feed-
back to inform the subject which display she is using: when
the subject selects a display, the system invokes the Ex-
posé function immediately. All application windows will
then be scaled and positioned such that no window is over-
lapped. On the one hand this serves as a feedback of the
selection step, on the other hand this also prepares users
for application focus.

5.2 Procedure

We proceed in the manner as described in 4.4.2: a coloured
icon was shown on the screen. The subject has to choose a
display according to the colour. Then she choose an appli-
cation to solve the primary task.

After each the use of each technique we gave them ques-

5.3 Results and Discussion 61

tionnaires to fill in. We also use informal interviews to
gather qualitative results.

However, we do not measure the time needed for each fo-
cus method, because the wizard’s reaction time would have
been included in the output focus time, making this vari-
able improper to characterise the technique.

Group plan
12 computer science students (8 females and 4 males) took
part in this round of testing. Their age ranged from 23 to
28. All of them had previous experience with graphical
user interfaces, but none of them had ever worked in an
Interactive Workspace. They reported that they had used
at most two computers simultaneously. Their participation
was a requirement to get their credits for the course they
have taken at our chair.

We also randomised the order of focus methods to min-
imise learning effect.

5.3 Results and Discussion

Pointing with Laser Pointer
Although we explicitly instructed the subjects to sweep

across the solar cell, most of them used the direct point-
ing technique instead. The laser pointer’s afforance for di-
rect pointing seems to be very strong. Now that the laser
pointer is used for direct pointing, some users found its use
intuitive. However, many users reported that it was un-
clear why they should point to the solar cell. They prefer
pointing to the display directly instead. Those who dis- Point to screen
liked this technique stated that they found the use of the
laser pointer as a focus device disturbing. They stated that
the functionality of the laser pointer is limited because it
was only used for selecting displays. For them, it did not
”pay off” to switch between the laser pointer and another
input device.

Although this technique has a laser spot as visual feed-
back, it was not fully reliable. There were a few users who

62 5 Preliminary testing

lost track of the laser spot after they made a sudden hand
movement. The same problem occurred, when some users
pointed the device to a non-reflective surface such as the
window panes in the room.

Some users found it confusing to have a laser spot and a
cursor on the display at the same time. This problem canCursor
be solved by WorldCusor’s approach: they synchronise the
laser spot with the virtual cursor on the display [Wilson and
Pham, 2003].

We did not explicitly instruct the subjects to use a particular
hand for a device. Most of them held the gyro mouse with
the right hand. They put down the mouse and picked up
the laser pointer with their right hand when they needed
the laser pointer. Only one subject used both of her hands.
With her left hand she held the laser pointer; with her right
hand she used the gyro mouse. However, we observed that
she had great difficulties in combining the usage of the two
devices. She often moved the false device. The fact that
the laser pointer is an absolute pointing device whereas
the gyro mouse is a relative pointing device even confused
her more. An explanation of this problem can be found inWicken’s cube
[Wickens, 2002]. According to attentional theory, if users
use the same modality for the same output channel (in this
case both hands produce manual responses), both tasks will
compete for the same cognitive resources which leads to an
interference of both actions.

Focus-by-Gaze
With this technique users can select a display by looking at
it. Since the technique is controlled by a wizard, we cannot
replicate the Midas touch effect. The Midas touch problemMidas touch
refers to the fact that eyes are always active, thus the chal-
lenge of many eye-input based interaction is to implement
a suitable clutch to control.

In general, users stated that they like this method. How-
ever, some found the time between looking at the device
and showing the feedback disturbing. We conclude thatNot well-represented

by wizard this technique is not well represented by a wizard-based
version. In reality this technique would perform much
faster. What we can take from this test is that users found
this technique natural and intuitive, but needed an explicit

5.3 Results and Discussion 63

action to trigger the focus change.

Pointing with Finger
With this technique users indicate a direction by pointing

with a finger. Users would like to explicitly request for fo- Awkward, also need
selectioncus transition similar to the Focus by Gaze technique. We

can use a shoot gesture or a voice command to implement
that. All users used their dominant hand to point to a dis-
play. In general they found this technique rather awkward.

Pointing with input device
The quality of this technique depends strongly on the char-
acteristics of the input device. Whereas the gyro mouse can
afford a direction, the subjects found pointing with a key-
board non-intuitive. We believe that the posture of hand, Which input device?
when using the device, is important for the quality of point-
ing. Other physical attributes such as weight and shape
also determine whether a device is applicable for pointing.
Remote controls, mobile phones, and pens are such devices.

Pointing with the gyro mouse had the highest grading
among all other techniques. However, when subjects com- Where am I?

Feedback?pared this technique with the technique that uses a laser
pointer, many of them found that it would improve the
technique if there was a feedback which showed where
they were pointing at.

Touch-to-Focus
At the beginning of the tests we expected that this tech-

nique would have the worst grading. However, the aver-
age grade of this technique was higher than ”pointing with
finger” and ”focus by gaze”. Some subjects mentioned that
they found walking across the room neither troublesome
nor exhausting. The reason might be the application fo-
cus technique. In other techniques, when users selected a Touchscreen support
display, they use the gyro mouse to select an application.
With Touch-to-Focus they could touch the window on the
plasma display directly. The gain of using this technique
seems to be greater than the cost of travelling across the
room.

General comments
Some users stated that they had difficulties in working with
the plasma display, because the visual elements were too

64 5 Preliminary testing

small: sometimes they lost the cursor and had to wiggle
the mouse to find out its position. The title bar and address
bar of a browser were also hard for them to read.

5.4 Method refinement

Visual feedback is not appropriate in our settings as dis-
plays may be out of users’ visual field. Some users did not
notice that a display had been falsely focused. Thus we use
the speech recogniser to provide audio feedback in the next
round of tests.

The primary task was too complex for the subjects. The in-Trial took too long
troduction phase took about 30 minutes in average, each
trial took further 15 to 20 minutes to be accomplished. Sub-
jects expected the experiments to last 30 to 60 minutes. As a
consequence, we only applied the URL-entry tasks and the
golf game in the following experiments.

Evaluation using paper-based questionnaires costs a lot of
time and effort to postprocess. Therefore we created a dig-
ital questionnaire that store the data in a database. The
questions are defined in a XML-file. The experimenter canQuestionnaire and

database customise the questions and their types by modifying this
definition file. Also this program supports open questions
and questions that need ratings. The labels and scale size
of a rating is defined in the same file. Also we can order the
questions hierarchically.

Because some visual elements are hard to see from a dis-
tance, we offer the subject two function keys to access Mac
OS X built-in magnifier for impaired people. The displayZooming
becomes a lens and the subject can move the lens using the
mouse.

In general, when a subject points with an input device, it is
hard for the wizard to see whether the subject has hit the
target or not. In future experiments, we should considerFrom Wizard’s point

of view attaching a camera to the pointing device.

65

Chapter 6

Comparison of Focus
Techniques

In the following experiment, we are interested in the per-
formance of four physical focus techniques.

• Dedicated-Keys (C1)

• Speech commands (C2)

• Pointing with a laser pointer (C3)

• Touch-to-Focus (C4)

6.1 Focus Techniques

We choose the laser pointer to represent pointing tech-
niques, because it was the only one that can be operated
without a wizard.

Touch-to-Focus is considered as a point of comparison be-
tween distant focus techniques and focus techniques that
require users to walk to the device.

66 6 Comparison of Focus Techniques

6.1.1 Dedicated-Keys

We use three physical buttons to represent the displays.
The mapping between displays and keys is shown in table
6.1.

F1 → Red display
F2 → Green display
F3 → Blue display

Table 6.1: Mapping between keys and displays

If the Patch Panel senses that one of the keys is pressed, it
emits a focus event to reconfigure itself. To make the map-
ping clear to the user, we coloured the physical keys as well.
We can consider each button as a physical representation of
a display, therefore this technique can be seen as an instance
of ID-based techniques.

6.1.2 Speech commands

The Mac OS X operating system is shipped with a speech
recogniser that does not need training. The iStuff package
includes a proxy that mediates between theEvent Heap and
the speech recogniser. When the subject says the command:
”red”, ”green”, or ”blue”, the proxy posts an event which
the Patch Panel translates into a focus event. This focus
event in turn changes the state of the Patch Panel. On each
machine that is connected to the displays we run a speech
recognition program. With these settings, we hope the sub-
ject can control input management from anywhere in the
room.

However, some pretests showed that the sound quality we
captured this way was not good enough for the system to
recognise. This is one of our observation: when the sys-
tem failed to recognise a speech command, the user walked
closer to the microphone, attempting to improve the audio
quality. If it failed again, she walked one step closer and so
on. In the end, the whole interaction became the same as

6.1 Focus Techniques 67

the Touch-to-Focus technique. So as long as speech recog-
nition does not work flawlessly, considering the location of
the capture device seems to be important.

To work around this problem we tell the user to wear a
head mounted microphone for the tests (see Figure 4.3).

6.1.3 Pointing gesture

We use a laser pointer to afford a directional ray. To sense
the laser spot, one can apply an array of photo transistors
or a solar cell. Our implementation uses the latter solu-
tion, therefore we attach a solar cell sensor to the upper-left
corner of each plasma display (see Figure 6.1). If the laser

Figure 6.1: Solar cell attached to the upper-left corner of a
plasma display.

spot hits the solar cell, the cell generates a small amount
of voltage; the amplitude of this signal is then magnified
by an operation amplifier. Figure 6.2 shows the circuit we
applied to amplify the signal.

The amount of voltage is monitored by an I/O interface

68 6 Comparison of Focus Techniques

-
+

I/O
Interface

820k

39k

Solar
Cell

+

-

Figure 6.2: We magnify the voltage of a solar cell with an
operation amplifier.

called TELEO module1 .

If the voltage crosses a certain threshold, the TELEO-proxy
emits an event that the Patch Panel translates into a focus
event. Users do not need to hold the laser pointer steady, it
suffices to sweep across the solar cell. Thus the problem of
hand jitters should not corrupt this technique.

6.1.4 Touch-to-Focus

For our experiments we use plasma displays that are touch
sensitive. When a user touches the instruction screen, it
posts a focus event to the Event Heap.

The key characteristic of this technique is that users need
to walk across the room. If no focus techniques are pro-
vided by the system, users must walk to a device and con-
figure the settings manually. Thus the interaction without
the support of focus techniques would take at least as long
as touching the device.

Therefore we use Touch-to-Focus as an anchor to compare
focus technique. Comparison with this technique reveals
the benefits of a focus technique.

1http://www.makingthings.com

http://www.makingthings.com

6.2 Procedure 69

6.2 Procedure

6.2.1 Modification

With the experience we gathered in the prior tests, we de-
cided to use audio feedback rather than visual feedback.
When users select a display, speech synthesiser will voice
the colour of display that was selected.

As described in the last chapter, we used a digital question-
naire to gather data. Furthermore, we offer users two hot
keys to zoom in and zoom out of the screen.

Experimental design
We applied the same procedure as described in section
4.4.2. However, due to the tremendous time consumption,
we adapted the modification suggested in section 5.4 and
worked with two types of primary tasks instead of four.
We have chosen to use the URL-entry task and the task that
requires the subject to move the cursor in a Fitt’s styled test.
We chose these two because text inputs and moving cursor
are common operations that are supported by every desk-
top machine.

Unlike the experiments in chapter 5, we also gathered
quantitative data. The dependent variable in this experi-
ments is the output focus time, see Figure 4.7.

Group plan
We conducted the following experiment with twelve com-
puter science students (five females and seven males).
Their age ranged from 22 to 29. We permutated the order
of the techniques C1, C2, C3 to avoid learning effects. The
subjects were distributed as in Table 6.2.

Hypothesis
We expect the Touch-to-Focus technique to be the slowest
and most rejected technique. Further, we hypothesise that
speech commands are the fastest among all techniques, be-
cause users do not have to switch devices to solve their pri-
mary tasks. We also expect that the pointing technique is
slower than Dedicated-Keys as users have to switch their

70 6 Comparison of Focus Techniques

Order of techniques Number of subjects
C1, C2, C3, C4 2
C1, C3, C2, C4 2
C2, C1, C3, C4 2
C2, C3, C1, C4 2
C3, C1, C2, C4 2
C3, C2, C1, C4 2
Total subjects 12

Table 6.2: Group plan in chapter 6

device.

6.3 Results

Unlike our last experiment, we measured the output focus
time for each trail. We gathered 182 data points.

To prepare the data for an ANOVA test we applied a log-
arithmic transformation on them. A one-way ANOVA test
showed that interaction technique has a significant effect
on output focus time (F = 26.6, p < 0.001). We applied
Tukey’s post-hoc pairwise comparisons on our data. It
shows that speech interface is significantly slower than fo-
cus techniques using dedicated keys or laser pointer (both
p < 0.01). Further, the Dedicated-Keys are significantly
faster than pointing with the laser pointer or Touch-to-
Focus (p < 0.01). With a lower certainty, the focus tech-
nique using the laser pointer is faster than Touch-to-Focus
(p < 0.05).

6.4 Discussion

Speech commands
In this setting the speech interface had the worse perfor-
mance. However, this was caused by the inaccuracy of the
technique. Although this speech recognition system does

6.4 Discussion 71

0

5000

10000

15000

20000

25000

Pointing Speech Touch-to-
Focus

Ded. Keys

t [ms]

Figure 6.3: Output focus time of pointing with a laser pointer, speech commands,
Touch-to-Focus, and Dedicated-Keys.

8

6

4

2

0
Pointing

Speech
Touch-to-Focus

Ded. Keys

Figure 6.4: Grading of pointing with a laser pointer, speech
commands, Touch-to-Focus, and Dedicated-Keys.

72 6 Comparison of Focus Techniques

not need training, it were the users that needed to learn
how to talk to the system.

Comparing to manual interaction, speech is more depen-
dent on an individual’s ability. Commands by users with a
strong accent were hard to recognise. However, there were
also users whose commands were recognised without any
problem. This explains the large deviation of our data. For
the latter group of users, their obstacle lay in the choice
of words. While the system can easily recognise the com-
mands ”red” and ”green”, it has difficulties in recognising
”blue”.

An interesting effect that we observed was the users’ be-
haviour when their command are not recognised. They
normally changed the prosody, changing a command into
a question.

One might argue that speech interface can perform better
if we use a system that needs training. However, an Inter-
active Workspace that we envision is a public environment.
Training is usually not appropriate in such an environment.Public space and

training of speech
interface

By doing the experiment with a modern commercial speech
system without training, we give a realistic view into how
a system might perform today. Also there are wizard of
oz speech prototyping systems that provides mechanism to
deliberately inject speech recognition error (see [Klemmer
et al., 2000]). This points out that errors in speech interface
should always be considered in the interface design.

Dedicated-Keys
According to the test we discussed above, Dedicated-Keys
seems to be the fastest technique. This suggests a systemThe winner
control such as in a TV studio’s control room, where the
director presses keys to switch among cameras.

Pointing with a laser pointer
We see that pointing with a laser is not as fast as using keys.
The reason for this is probably the small target size that a
solar cell offers. The width of the solar cells we used is 4.5
cm with a height of 7 cm. We have also measured the dis-Fitt’s law analysis
tance of the solar cells pairwise: 285 cm, 347 cm, 591 cm.
Now we can apply the Fitt’s law model to our data to es-
timate the time it might take, if we allow users to select a

6.4 Discussion 73
t

[m
s]

ID [bit]

Figure 6.5: Data Regression

screen by pointing to the screen itself. We applied regres-
sion on our data (also see Figure 6.5 and Table 6.3): While

time = a + b ∗ log2(
distance

width
+ 1)

a = −562.5965
b = 800.1923

Table 6.3: We applied the Fitt’s law model to the pointing
technique.

the solar cells we used have a width of 4.5 cm, the plasma
displays had the size 100 cm x 63 cm. Supposed the dis-
tance of the targets are in 285 cm far away, according to the
Fitt’s law, if we use a solar cell as the target area we need

74 6 Comparison of Focus Techniques

4244 milliseconds to accomplish the pointing task. If we use
the complete display as the target area instead, the model
predicts that it will take 994 milliseconds. This would event
beat the Dedicated-Keys technique. However, we still need
real experiment data to back this claim.

6.5 Method refinement

Many subjects complained that the testbed was slow and
did not react to their input immediately. Due to this de-
lay the instruction icons did not appear on the displays at
the same time. This delay caused extra variance in the focus
time measurement. The reason for this delay was the unbal-Speed up primary

tasks anced load of the AppleScript proxy program. As stated in
section 4.2, we heavily rely on the AppleScript language to
generate voice feedbacks, activate windows, get the name
of the focused window on a machine, and zoom in and
zoom out.

To solve this problem, we redirect some of these tasks
to other components. We created a program called
NSWorkSpaceProxy which brings windows to the front
and responds to requests for the active window’s name.
Users can communicate with the NSWorkSpaceProxy
through events that are documented in appendix B.

Another measure we took to speed up the AppleScript
proxy is to replace it by a version written in objective C lan-
guage. The former version is written in Java. To process an
AppleScript event it needs to access persistent memory and
invoke commands from the terminal. This was the main
reason for its suboptimal performance. Whereas the objec-
tive C version receives an AppleScript event and runs the
script in the working memory.

We should notice that these measures do not have an im-
pact on the output focus selection, but on the application
focus time. With these modification we can measure appli-
cation focus time, which was not possible in our previous
settings. Nevertheless, it gave the subjects a more natural
feeling and reduced the time they needed for each trial.

75

Chapter 7

Comparison with
GUI-based technique

In chapter 6, we compared four different focus techniques
with each other. Our result was that the Dedicated-Keys
performed best in terms of output focus time. In this chap-
ter, we want to compare this technique with successful re-
search and commercial alternatives. One is the Vitrual-
Path, which corresponds to the technique applied in the
PointRight project (see chapter 2). The other is the World-
in-Miniature technique, which uses an iconic map such as
the ARIS project does (see chapter 2).

The techniques discussed in this chapter are:

• Dedicated-Keys (Ci)

• Virtual-Path (Cii)

• World-in-Miniature (Ciii)

7.1 Focus techniques

Dedicated-Keys is the same technique we used for the ex-
periment in chapter 6 and does not need to further descrip-
tion.

76 7 Comparison with GUI-based technique

7.1.1 Virtual-Path

With the Virtual-Path technique, the focus follows the
mouse of a user. Users can move their cursor across dis-
plays, giving them the feeling as if they are using a tiled
large display.

The connections between displays are called virtual paths;
they define the virtual topology of the displays. PointRight
is the currently best-known system that implements this
design. We will use a system that is a part of the iRoom
operating system for our experiment in chapter 7.

The virtual layout of our settings is defined as follows: the
right border of the red display is connected to the left bor-
der of the green display and the right border of the green
display is connected to the left border of the blue display.

7.1.2 World-in-Miniature

World-in-miniature shows a miniaturised representation of
the room for input management. We choose an iconic map
similar to the ARIS project (see Figure 7.1). The GUI we
provided for the experiments is based on the Wizard’s GUI
described in section 4.4.3. A key difference between them
is that users need to click on an icon explicitly to change
the focus. An important part for the interaction is move the
map to the front. In the ARIS project users have to press
on a special button in the title bar of a window. We have
chosen to use the right click of the gyro mouse to show the
map, which allows a faster interaction speed.

7.2 Procedure

We used the same experiment design as in chapter 6 but
with the improvement as mentioned in section 6.5. An self-
explanatory instruction is shown on the screen. The subject
has to select the output device according to the colour of
the icon.

7.2 Procedure 77

Figure 7.1: An iconic map of output devices in MediaSpace.
When user clicks on an icon that represents an output de-
vice her inputs will be redirected to that output device.

Group plan
Three techniques were compared. Each technique is used
for 16 trials. For this within-subject experiment we invited
12 computer science students to perform 48 trials. Their
age varied from 22 to 27. As in the preceding experiments,
they needed to attend an experiment to get their credits. We
permutated the order of focus techniques to avoid learning
effects. The subjects were distributed as in Table 7.1.

Order of techniques Number of subjects
Ci, Cii, Ciii 2
Ci, Ciii, Cii 2
Cii, Ci, Ciii 2
Cii, Ciii, Ci 2
Ciii, Ci, Cii 2
Ciii, Cii, Ci 2

Total subjects 12

Table 7.1: Group plan in chapter 7

78 7 Comparison with GUI-based technique

0

2000

4000

6000

8000

10000

12000

World-in-Miniature

Dedicated-Keys

Virtual-Path

t
[m

s]

Figure 7.2: Output focus time of Dedicated-Keys, Virtual-Path, World-in-
Miniature.

Hypothesis
We predicted that the Dedicated-Keys technique, being a
physical focus technique, still has the best performance
than the other two techniques.

7.3 Results

An ANOVA test on the raw data showed that the interac-
tion technique has a significant effect on output focus time
(F = 62, p < 0.001). We can see that the World-in-Miniature
technique is significantly slower than the other two tech-
niques (see Figure 7.2).

Surprisingly the performance of Virtual-Path is close to the
Dedicated-Keys’ performance. Figure 7.3 shows the grad-
ing of the techniques. Running a Kruskal Wallace test on

7.4 Discussion 79

them showed no significant effect.

8

6

4

2

0
Ded. Keys Virtual-Path World-in-Miniature

Figure 7.3: Users’ grading of Dedicated-Keys, Virtual-Path,
World-in-Miniature.

7.4 Discussion

World-in-Miniature
From our observation, the World-in-Miniature takes longer
than the other two techniques because of the following rea-
sons:

• Bringing up the map introduces an additional inter-
action cycle.

• Controlling the cursor from afar is difficult, because
most users are not familiar with the gyro mouse.

A further phenomenon we observed in our experiment
showed that the World-in-Miniature is a verb-noun inter-
action: a user was working on the display A and needed Verb-noun interaction
to focus the display B; she looked around and searched for
the display B in the physical world; then she clicked on the

80 7 Comparison with GUI-based technique

right button to show the map. However, she was still look-
ing at display B and expected a response on that display,
whereas the focus of her device still was at the display A.

In ARIS, this effect can not be observed, because their main
target was to move applications from one display to an-
other. The icon of an application serves as the noun in their
context.

Despite the problem mentioned above the iconic map also
has some advantages: an iconic map provides feedback
that is clear and easy to understand. One subject found the
iconic map beneficial to novices that are not familiar with
the environment.

Virtual-Path
Although the Virtual-Path techniques is not the statistical
significantly fastest technique, its performance is compa-
rable to the Dedicated-Keys. However, the quality of this
technique depends on the underlying topology. In our set-
tings, all displays are aligned linearly in the physical world.
The topology is defined in the same way.When not aligned?

This technique breaks down if displays are not arranged in
a linear order. Users will then probably have difficulties in
predicting the cursor’s behaviour.

Dedicated-Keys
Although this technique is the fastest, the result is not trans-
ferable to all settings. This technique will probably breakNumber of devices
down, if the number of selectable device increases. It will
become harder to find an appropriate mapping between
devices and keys.

81

Chapter 8

Summary and Future
work

“New media, like any chaotic system, are highly
sensitive to initial conditions. Today’s heuristical

answers of the moment become tomorrow’s
permanent institutions of both law and

expectation.”

—John Perry Barlow

8.1 Summary

In this work, we investigated how input control can be
managed in Interactive Workspaces. First, we analysed the
concept of focus on traditional desktops, where the active
window is the destination of input events.

Then we pointed out the key differences between a tradi-
tional desktop environment and an Interactive Workspace.
Unlike traditional desktops, we have multiple users,
devices, machines, and applications in an Interactive
Workspace. These entities should be loosely coupled, but
easy to combine.

To describe the dynamic aspect of an Interactive Workspace

82 8 Summary and Future work

we used the Focus Space to illustrate how users can dynam-
ically redirect input and what information is needed for this
task. A Focus Space consists of multiple tuples, each of
which describes an active event route. Such a tuple denotes
the following information:

• the ownership of the route,

• the input device that generates events,

• the application and the widget that process the event,

• the machine, on which this application is running,

• the output device that provides feedback.

An Interactive Workspace should offer focus techniques for
each of these levels. There is a pattern that these focus tech-
niques share, so we use the 3 steps model to capture this
pattern. The three steps are: recognition, indication, and se-
lection. We hope that future designers can use it for heuris-
tic evaluation and to generate new focus techniques.

In the practical part of this thesis, we incrementally de-
veloped a testbed and defined a method to compare focus
techniques with each other. In an environment with three
plasma displays, users applied different focus techniques
to select the display. We used the output focus time to mea-
sure the performance of the following techniques:

• pointing with a laser pointer,

• speech commands,

• Dedicated-Keys,

• Touch-to-Focus,

• Virtual-Path,

• World-in-Miniature.

In the first round of our experiments we compared speech
commands, Dedicated-Keys, pointing with a laser pointer,

8.2 Future work 83

and Touch-to-Focus. According to our data Dedicated- Ded. keys fastest
Keys was the fastest among the four techniques in our set-
tings.

With the Dedicated-Keys as the winner of the first round,
we compared this technique with Virtual-Path and World-
in-Miniature. Both Virtual-Path and Dedicated-Keys were Ded. keys and

Virtual-Pathsignificantly faster than the World-in-Miniature technique.

Finally, during the development process we made several
contribution to enrich the iStuff software package:

• A new and documented Patch Panel scripting Lan-
guage.

• A more efficient proxy for AppleScript events.

• An AppleScript interface for the Event Heap.

• NSWorkspaceProxy to control activation of windows
on local machines.

8.2 Future work

There are two main criticisms to the experiments conducted
in this study:

• The several assumptions in chapter 4 we made might
be too strong.

• The validity of our method depends on the primary
tasks and the settings.

8.2.1 Simplified conditions

The assumptions we made to simplify the problem might
be too strong. We can put more strain on the techniques by
relaxing these assumptions stepwise. Thus we can find out
their limits.

84 8 Summary and Future work

For example, we can include multiple types of devices in
our settings. It will also have a benefit for group meetingsMultiple types of

devices if we can control loudspeakers, window blinds, or lights.
The challenge will be connecting these devices to the Event
Heap.

In our experiments, each trial is completed by a single sub-
ject. We can extend the testbed for multiple users andMultiple users
study their behavioural patterns such as in [Biehl and Bai-
ley, 2006].

When multiple users are working together, they might need
to share devices. What will happen when a user hands over
a device to another user who is working in a different con-
text? How can she reconfigure the device?

In this work, we searched for focus techniques that does not
require additional personal devices to operate. If we drop
this constraint, the most promising technique will be [My-
ers et al., 2002]’s Semantic Snarfing technique. With thisInteraction using

PDA technique users point a PDA to a device for coarse grained
selection; a small area of the targeted display will be copied
to the PDA. Users then can apply the PDA’s touchscreen to
interact with this area on a fine grained level.

8.2.2 Validity of methods

The user’s primary tasks in our experiments was to use the
keyboard to enter an URL and to move the cursor using a
gyro mouse. We decided to use these tasks because they
should emulate a natural working environment.

We also considered using primary tasks based on a scenario
in which one or more users have to access different devices
to solve a higher level task. However, we did not come
up with a meaningful task that is both natural and requires
multiple displays. Later in the process we found in [Biehl
and Bailey, 2006] a promising approach. In their work, sub-
jects were instructed to create a document collaboratively.
Unfortunately, there was not enough time and resources to
implement this testbed.

8.2 Future work 85

Choice of measure

We used the focus time to measure the performance of a
technique. There are also other measures that we find use- Head movements
ful to characterise a technique. For example, we can use the
amount of head movements to quantify the effort needed
for a technique.

Another attribute is the learnability of a technique. If we Learnability
can quantify this attriribute we can verify whether the
World-in-Miniature technique is better for people with few
experience with computers.

8.2.3 Focus device prototype

As stated in section 5.3, users find it more intuitive to point
at the screen directly rather than pointing at a sensor area.
We attached an iSight webcam to a gyro mouse to prototype
this technique(see Figure 8.1 and Figure 8.2).

Figure 8.1: Focus device prototype consists of a gyro
mouse, a webcam, a laser pointer and a magneto mechani-
cal switch.

86 8 Summary and Future work

Figure 8.2: Focus device prototype with a coil driven
switch.

Furthermore, users complained that pointing with the gyro
mouse did not provide enough feedback. So we also attach
a laser pointer to our prototype.

Some users mentioned that they sometimes lost track of the
laser spot. Thus a redundant feedback may keep the indi-
cation step intact. For this we attached a magneto mechan-
ical switch on the device. On the one hand, the laser spot
shows where the user is pointing to, on the other hand, theRedundant

multimodal feedback switch produces a ”click”-sound whenever the user sweeps
the device across the border of a display. The switch also
produces a vibration that can be sensed by the user. The
device delivers the same feedback when the user sweeps
across the border again. Thus she always knows when she
enters and when she leaves a selectable area.

For the selection step, a user just needs to click the button
of the gyro mouse. We can also implement a redundant
selection technique using speech command.

Currently this device is controlled by the wizard, but with
the ARToolkit1 we believe that we can implement a fully

1http://www.hitl.washington.edu/artoolkit/

http://www.hitl.washington.edu/artoolkit/

8.2 Future work 87

functional device.

We would like to conduct further experiments to compare
this prototype with the Virtual-Path technique. The main
difference between them is the topology they use. The
Virtual-Path technique uses a predefined topology in the
indication step whereas our prototype uses the physical
world.

Compared to [Myers et al., 2002]’s Semantic Snarfing both
techniques use a pointing based coarse grained selection
technique combined with a cursor based technique to do
fine grained selections.

8.2.4 Coexisting focus techniques

On a desktop system, we use primarily the mouse to
change our focus, but we can also use the keyboard to
change the active window. The choice of focus techniques
depends on the users’ preferences and their current tasks.

This principle also applies in an Interactive Workspace. The
users’ current task is most relevant to the choice of focus
technique. Moreover, users will be holding an input device Regard input task
to solve their primary task. Most likely, they will choose a
focus method that does not interrupt the use of this device.

Thus we believe that an Interactive Workspace should offer
multiple techniques to manage input.

Results from our experiments showed that both Dedicated-
Keys and Virtual-Path techniques performed well. We
should therefore combine these two techniques in our set-
tings, so that users do not have to switch devices to change Minimise homing

timethe focus. Minimising the homing time should be our pri-
mary goal when we design an Interactive Workspace or
when we introduce new devices into it.

89

Appendix A

Patch Panel script

All patch panel scripts that use the following grammar
must start with the line

//#v2.0

to specify the version of the scripting language. Comments
are implemented leaning on common language such as C
or Java: a single-line comment starts with // and ends with
a linebreak; a multiple-line comment block starts with /*
and ends with */. Grammar:

90 A Patch Panel script

script ⇐= head-line { body-line }

head-line ⇐= group groupname semicolon
body-line ⇐= event-definition | state-definition | variable-definition

event-definition ⇐= event event-name type event-type-nameevent-block
event-block ⇐= brace-open {field-definition} brace-close
field-definition ⇐= field-lhs = field-rhs semicolon
field-lhs ⇐= field-type field-name
field-rhs ⇐= expression [field-template-definition]
field-template-definition ⇐= , (FORMAL | VIRTUAL)

expression ⇐= ..tbd
conditional-expression ⇐= constant-expression..tbd
constant-expression ⇐= string defining tbd

variable-definition ⇐= (variable-lhs = expression | timer timer-name) semicolon
variable-lhs ⇐= variable-type variable-name

state-definition ⇐= [initial] state state-name state-block
state-block ⇐= brace-open {inner-block-definition} brace-close
inner-block-definition ⇐= event-definition |

variable-definition |
action-trigger-definition

action-trigger-definition ⇐= on (enter | event-name) action-trigger-block
action-trigger-block ⇐= brace-open {statement} brace-close
statement ⇐= send-statement |

goto-statement |
cancel-statement |
set-statement |
switch-statement |
if-else-statement |
variable-assignment |
compound-statement

Table A.1: Grammar of Patch Panel script

91

send-statement ⇐= send event-name semicolon
goto-statement ⇐= goto state-name semicolon
cancel-statement ⇐= cancel timer-name semicolon
set-statement ⇐= setTimer timer-name

(integer | variable-name) semicolon

switch-statement ⇐= switch variable-type
parentheses-open expression parentheses-close
switch-block

switch-block ⇐= brace-open
{case-group} cases-with-no-behaviour
brace-close

switch-label ⇐= (case constant-expression |
case variable-name |
case range |
default) colon

cases-with-no-behaviour ⇐= {switch-label}
case-group ⇐= switch-label {switch-label}

brace-open {statement} brace-close

if-else-statement ⇐= if condition then-block [else-part]
condition ⇐= parentheses-open

conditional-expression
parentheses-close

then-block ⇐= compound-statement
else-part ⇐= else (if-else-statement | else-block)
else-block ⇐= compound-statement

variable-assignment ⇐= variable-name = expression semicolon
compound-statement ⇐= brace-open {statement} brace-close

Table A.2: Statement in Patch Panel script

92 A Patch Panel script

semicolon ⇐= ;
semicolon ⇐= :
brace-open ⇐= {
brace-close ⇐= }
parentheses-open ⇐= (
parentheses-close ⇐=)
or-token ⇐= ||
groupname ⇐= arbitrary string
event-name ⇐= arbitrary string
event-type-name ⇐= arbitrary string |

”arbitrary string containing
reserved keywords or space”

field-name ⇐= arbitrary string
field-type ⇐= string | int | float | double | long
variable-name ⇐= arbitrary string |

in.arbitrary string |
out.arbitrary string |
global.arbitrary string

variable-type ⇐= field-type
state-name ⇐= arbitrary string
range ⇐= [numerical-literal , numerical-literal] |

[numerical-literal , numerical-literal} |
{ numerical-literal , numerical-literal] |
{ numerical-literal , numerical-literal}

Table A.3: Terminal symbols in Patch Panel script

93

expression ⇐= ternary-expression
conditional-expression ⇐= conditional-or-expression
constant-expression ⇐= literal

boolean-literal ⇐= true | false
numerical-literal ⇐= [-] integer-literal | [-] floating-point-literal
literal ⇐= numerical-literal | boolean-literal | string-literal
primary ⇐= literal |

parentheses-open expression parentheses-close |
identifier

unary-expression ⇐= ! unary-expression |
primary | cos unary-expression |
sin unary-expression | tan unary-expression |
acos unary-expression | asin unary-expression |
atan unary-expression | sqrt unary-expression |
exp unary-expression | log unary-expression |
floor unary-expression | ceil unary-expression |
abs unary-expression

comparative-expression ⇐= unary-expression |
min(comparative-expression , unary-expression) |
max(comparative-expression , unary-expression)

multiplicative-expression ⇐= comparative-expression |
multiplicative-expression ∗ unary-expression |
multiplicative-expression / unary-expression |
multiplicative-expression % unary-expression |
multiplicative-expression ∧ unary-expression

additive-expression ⇐= multiplicative-expression |
additive-expression + multiplicative-expression |
additive-expression - multiplicative-expression

Table A.4: Experssion in Patch Panel script (i/ii)

94 A Patch Panel script

relational-expression ⇐= additive-expression |
relational-expression < additive-expression |
relational-expression > additive-expression |
relational-expression <= additive-expression |
relational-expression >= additive-expression

equality-expression ⇐= relational-expression |
equality-expression == relational-expression |
equality-expression != relational-expression

conditional-and-expression ⇐= equality-expression |
conditional-and-expression && equality-expression

conditional-or-expression ⇐= conditional-and-expression |
conditional-or-expression
or-token
conditional-and-expression

ternary-expression ⇐= conditional-or-expression |
ternary-expression ?
ternary-case-true-expression : ternary-case-false-expression

ternary-case-true-expression ⇐= conditional-or-expression
ternary-case-false-expression ⇐= conditional-or-expression

Table A.5: Experssion in Patch Panel script (ii/ii)

95

Appendix B

NSWorkspace proxy

Event Field Comments Required
EventType GWM EVENT always

gwmEventTarget Name of the machine this event is targeted optional
to. If not set, this event
holds for all machines.

gwmEventType app forward or app backward: toggles the always
active window of the machine specified
in the field [gwmEventTarget].

Table B.1: Toggle active window event

Event Field Comments Required
EventType GWM EVENT always

gwmEventTarget Name of the machine this event is targeted optional
to. If not set, this event
holds for all machines.

gwmEventType app activate: activates the application always
specified by [appName] on the machine
specified by the field [gwmEventTarget].

appName Name of the application to activate. yes
If the application is not running, it will be
started. The according window will get
the focus.

Table B.2: Activate window event

96 B NSWorkspace proxy

Event Field Comments Required
EventType GWM EVENT always

gwmEventTarget Name of the machine this event is targeted optional
to. If not set, this event
holds for all machines.

gwmEventType app getAll: returns an event containing all always
running application in the environment.

Table B.3: Activate window event

Event Field Comments Required
EventType GWM EVENT always

gwmEventTarget Name of the machine this event is targeted optional
to. If not set, this event
holds for all machines.

gwmEventType app getActive: returns an event that contains always
the name of the active window.

Table B.4: Get activate window event

97

Appendix C

Questionnaire

98 C Questionnaire

Date of test
Time of test

Technique

1. Selection of display

1.1 Switching among the screens is
easy to learn difficult to learn

1 2 3 4 5 6 7 8 9

1.2
intuitive non-intuitive

1 2 3 4 5 6 7 8 9

1.3
very easy very difficult

1 2 3 4 5 6 7 8 9

1.4
comfortable very uncomfortable

1 2 3 4 5 6 7 8 9

1.5 Switching among the screens makes me tired.
strongly agree strongly disagree

1 2 3 4 5 6 7 8 9

1.6 Time needed to switch to a screen is
unacceptable acceptable

1 2 3 4 5 6 7 8 9

1.7 You can distinguish your selection easily.
strongly agree strongly adequate

1 2 3 4 5 6 7 8 9

99

2. Application selection

2.1 Switching among the applications is
easy to learn difficult to learn

1 2 3 4 5 6 7 8 9

2.2
intuitive non-intuitive

1 2 3 4 5 6 7 8 9

2.3
very easy very difficult

1 2 3 4 5 6 7 8 9

2.4
comfortable very uncomfortable

1 2 3 4 5 6 7 8 9

2.5 Switching among the applications makes me tired.
strongly agree strongly disagree

1 2 3 4 5 6 7 8 9

2.6 Time needed to switch to an application is
unacceptable acceptable

1 2 3 4 5 6 7 8 9

2.7 You can distinguish your active application from others easily.
strongly agree strongly disagree

1 2 3 4 5 6 7 8 9

3. Overall interaction

3.1 You can switch between the tasks smoothly.
strongly agree strongly disagree

1 2 3 4 5 6 7 8 9

3.2 Switching to another screen cost you a lot of time.
strongly agree strongly disagree

1 2 3 4 5 6 7 8 9

3.3 It is clear what you are controlling.
Always Never

1 2 3 4 5 6 7 8 9

100 C Questionnaire

1. Techniques grading

1.1 Using a laser pointer to select display
Terrible Wonderful

1 2 3 4 5 6 7 8 9

1.2 Pointing with finger
Terrible Wonderful

1 2 3 4 5 6 7 8 9

1.3 Touch to select
Terrible Wonderful

1 2 3 4 5 6 7 8 9

1.4 Selection by gaze
Terrible Wonderful

1 2 3 4 5 6 7 8 9

1.5 Pointing with the gyro mouse
Terrible Wonderful

1 2 3 4 5 6 7 8 9 N/A

1.6 Pointing with the keyboard
Terrible Wonderful

1 2 3 4 5 6 7 8 9 N/A

2. Experience

2.1 The maximum number of computers with which you have worked with si-
multaneously:

2.2 The number of mobile devices you use at home:

2.3 Your age:

2.4 How familiar are you with Mac OS X? (Shortkeys, Exposé)
Novice Expert

1 2 3 4 5 6 7 8 9

3. Your comments:

101

Bibliography

Inc. Apple Computers. Mac OS X Exposé, 2003. URL www.
apple.com/macosx/features/expose.

Rafael Ballagas, Meredith Ringel, Maureen Stone, and Jan
Borchers. iStuff: a Physical User Interface Toolkit for
Ubiquitous Computing Environments. In CHI ’03: Pro-
ceedings of the SIGCHI conference on Human factors in com-
puting systems, pages 537–544. ACM Press, 2003.

Patrick Baudisch and Carl Gutwin. Multiblending: dis-
playing overlapping windows simultaneously without
the drawbacks of alpha blending. In CHI ’04: Proceedings
of the SIGCHI conference on Human factors in computing sys-
tems, pages 367–374. ACM Press, 2004.

Jacob T. Biehl and Brain P. Bailey. Improving Interfaces
for Managing Applications in Multiple-Device Environ-
ments. In CHI ’06: Proceedings of the SIGCHI conference on
Human factors in computing systems, 2006.

Jacob T. Biehl and Brian P. Bailey. ARIS: an interface for ap-
plication relocation in an interactive space. In GI ’04: Pro-
ceedings of the 2004 conference on Graphics interface, pages
107–116. Canadian Human-Computer Communications
Society, 2004.

Richard A. Bolt. ”put-that-there”: Voice and gesture at the
graphics interface. In SIGGRAPH ’80: Proceedings of the
7th annual conference on Computer graphics and interactive
techniques, pages 262–270. ACM Press, 1980.

Jan Borchers. The Aachen MediaSpace: Multiple displays
in collaborative interactive environments. In Workskop:
Information Visualization and Interaction Techniques for Col-
laboration across Multiple Displays, 2006.

www.apple.com/macosx/features/expose
www.apple.com/macosx/features/expose

102 Bibliography

Brockhaus. Der Brockhaus-Computer und Informationstech-
nologie. F.A. Brockhaus, 2002.

Rodent A. Brooks. The intelligent room project. In Second
International Cognitive Technology Conference (CT’97), 1997.

Barry Brumitt, Brian Meyers, John Krumm, Amanda Kern,
and Steven A. Shafer. EasyLiving: Technologies for Intel-
ligent Environments. In HUC ’00: Proceedings of the 2nd
international symposium on Handheld and Ubiquitous Com-
puting, pages 12–29. Springer-Verlag, 2000.

Mark H. Chignell and John A. Waterworth. Wimps and
nerds: an extended view of the user interface. SIGCHI
Bull., 23(2):15–21, 1991.

David Fono and Roel Vertegaal. Eyewindows: Evaluation
of Eye-Controlled Zooming Windows for Focus Selec-
tion. In CHI ’05: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 151–160. ACM
Press, 2005.

Barbara J. Grosz. Focusing in Dialog. In Proceedings of
the 1978 workshop on Theoretical issues in natural language
processing, pages 96–103. Association for Computational
Linguistics, 1978.

Alex Hioreanu. AHWM - Alex Hioreanu’s Window
Manager, 2002. URL people.cs.uchicago.edu/
∼ahiorean/ahwm/.

Charles L. Isbell, Olufisayo Omojokun Jr., and Jeffrey S.
Pierce. From devices to tasks: automatic task prediction
for personalized appliance control. Personal Ubiquitous
Comput., 8(3-4):146–153, 2004.

Brad Johanson, Armando Fox, and Terry Winograd. The
Interactive Workspaces Project: Experiences with Ubiq-
uitous Computing Rooms. IEEE Pervasive Computing, 1
(2):67–74, 2002a.

Brad Johanson, Greg Hutchins, Terry Winograd, and Mau-
reen Stone. PointRight: Experience with Flexible Input
Redirection in Interactive Workspaces. In UIST ’02: Pro-
ceedings of the 15th annual ACM symposium on User inter-
face software and technology, pages 227–234. ACM Press,
2002b.

people.cs.uchicago.edu/~ahiorean/ahwm/
people.cs.uchicago.edu/~ahiorean/ahwm/

Bibliography 103

Khomkrit Kaowthumrong, John Lebsack, and Richard Han.
Automated Selection of the Active Device in Interac-
tive Multi-Device Smart Spaces. In In Workshop at Ubi-
Comp’02: Supporting Spontaneous Interaction in Ubiquitous
Computing Settings, 2002.

Manpreet Kaur, Marilyn Tremaine, Ning Huang, Joseph
Wilder, Zoran Gacovski, Frans Flippo, and Chan-
dra Sekhar Mantravadi. Where is ”it”? event synchro-
nization in gaze-speech input systems. In ICMI ’03: Pro-
ceedings of the 5th international conference on Multimodal in-
terfaces, pages 151–158. ACM Press, 2003.

Scott R. Klemmer, Anoop K. Sinha, Jack Chen, James A.
Landay, Nadeem Aboobaker, and Annie Wang. Suede: a
wizard of oz prototyping tool for speech user interfaces.
In UIST ’00: Proceedings of the 13th annual ACM symposium
on User interface software and technology, pages 1–10. ACM
Press, 2000.

Lee Hoi Leong, Shinsuke Kobayashi, Noboru Koshizuka,
and Ken Sakamura. CASIS: a context-aware speech in-
terface system. In IUI ’05: Proceedings of the 10th inter-
national conference on Intelligent user interfaces, pages 231–
238. ACM Press, 2005.

Brad A. Myers. The Pebbles Project: Using PCs and Hand-
held Computers Together. In CHI ’00: CHI ’00 extended
abstracts on Human factors in computing systems, pages 14–
15. ACM Press, 2000.

Brad A. Myers, Rishi Bhatnagar, Jeffrey Nichols,
Choon Hong Peck, Dave Kong, Robert Miller, and
A. Chris Long. Interacting at a distance: measuring the
performance of laser pointers and other devices. In CHI
’02: Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 33–40. ACM Press, 2002.

Miguel A. Nacenta, Dzmitry Aliakseyeu, Sriram Subrama-
nian, and Carl Gutwin. A Comparison of Techniques for
Multi-Display Reaching. In CHI ’05: Proceedings of the
SIGCHI conference on Human factors in computing systems,
pages 371–380. ACM Press, 2005.

Jef Raskin. The Humane Interface: New Directions for De-
signing Interactive Systems. Addison-Wesley Professional,
2000.

104 Bibliography

Manuel Romàn, Christopher Hess, Renato Cerqueira,
Anand Ranganathan, Roy H. Campbell, and Klara
Nahrstedt. Gaia: a middleware platform for active
spaces. SIGMOBILE Mob. Comput. Commun. Rev., 6(4):
65–67, 2002.

Ronald Rosenfeld, Dan Olsen, and Alex Rudnicky. Univer-
sal Speech Interfaces. interactions, 8(6):34–44, 2001.

Michael Siracusa, Louis-Philippe Morency, Kevin Wilson,
John Fisher, and Trevor Darrell. A Multi-Modal Ap-
proach for Determining Speaker Location and fFocus. In
ICMI ’03: Proceedings of the 5th international conference on
Multimodal interfaces, pages 77–80. ACM Press, 2003.

Hannah Slay and Bruce Thomas. Interaction and visuali-
sation across multiple displays in ubiquitous computing
environments. In Afrigaph ’06: Proceedings of the 4th in-
ternational conference on Computer graphics, virtual reality,
visualisation and interaction in Africa, pages 75–84, 2006.

Rainer Stiefelhagen, Jie Yang, and Alex Waibel. Model-
ing Focus of Attention for Meeting Indexing. In MUL-
TIMEDIA ’99: Proceedings of the seventh ACM international
conference on Multimedia (Part 1), pages 3–10. ACM Press,
1999.

Roel Vertegaal, Aadil Mamuji, Changuk Sohn, and Daniel
Cheng. Media eyepliances: using eye tracking for remote
control focus selection of appliances. In CHI ’05: CHI ’05
extended abstracts on Human factors in computing systems,
pages 1861–1864. ACM Press, 2005.

Daniel Vogel and Ravin Balakrishnan. Distant Freehand
Pointing and Clicking on Very Large, High Resolution
Displays. In UIST ’05: Proceedings of the 18th annual ACM
symposium on User interface software and technology, pages
33–42. ACM Press, 2005.

Grant Wallace, Peng Bi, Kai Li, and Otto Anshus. A multi-
cursor x window manager supporting control room col-
laboration. Technical report, Princeton University, July
2004.

Rainer Wasinger and Antonio Krüger. Modality Preference
- Learning from Users. In Workshop on User Experience

Bibliography 105

Design for Pervasive Computing (Experience) at Pervasive.
Springer-Verlag, 2005.

Rainer Wasinger, Christian Kray, and Christoph Endres.
Controlling multiple devices. In Physical Interaction (PI03)
Workshop on Real World User Interfaces at MobileHCI, pages
60–63, 2003.

Mark Weiser. The Computer of the 21st Century. Scientific
American, Sept 1991.

Christopher D. Wickens. Multiple resources and perfor-
mance prediction. THEOR. ISSUESIN ERGON. SCI.,, 3
(2), 2002.

Andrew Wilson and Hubert Pham. Pointing in Intelli-
gent Environments with the WorldCursor. In INTERACT,
2003.

Andrew Wilson and Steven Shafer. XWand: UI for intelli-
gent spaces. In CHI ’03: Proceedings of the SIGCHI confer-
ence on Human factors in computing systems, pages 545–552.
ACM Press, 2003.

107

Index

3 steps model
- indication, 36
- recognition, 34
- selection, 36

5 M’s paradigm, 29

abbrv, see abbreviation
Application focus

- time, 56

Concurrent manipultion, 3
Context-based technique, 42

Device
- allocation, 32
- release, 32
- share, 32

Evaluation, 59, 65, 75
Event Heap, 46
Experiment design, 54, 60, 69, 76
Experiment result, 61, 70, 79
Experiment stat., 70, 73, 78
Explicit focus technique, 8, 37
Eye-Tracking, 24

Factor
- accuracy, 39
- distant interaction, 38
- feedback, 39
- focus device, 40
- frequency of change, 40
- number of devices, 40
- range, 39
- topology, 39

Feedback, 36
Focus

- desktop, 28
- interactive workspace, 29

108 Index

Focus method, 7
Focus space, 30

- change, 31
- tuple, 30, 33

Focus-follows-Mouse, 28
Focus-on-Click, 6, 28

GUI-based focus technique, 42

ID-based technique, 41
Implicit focus technique, 8, 37, 42
Interactive Workspaces, 1, 16
iROS, 46

List-based technique, 41

MediaSpace, 44
Midas touch, 62
Multimodal interfaces, 23

Output focus
- time, 56

Patch Panel, 48
- script, 49

Pointing
- gesture, 22

Pointing technique, 40
- gaze, 62
- gesture, 63
- input device, 63
- laser pointer, 61

Preliminary test, 59
Primary task, 7, 52

- time, 56

Related
- ARIS, 16
- Multi-Cursor window manager, 14
- PointRight, 18
- The Intelligent Room, 18
- the Pebbles Project, 15
- Universal Interaction Controller, 19

Sharing device, 3
Sharing information, 3
Simplification, 83
Single Display Groupware, 13
Speech interface, 21, 41
Summary, 81

Index 109

Techniques
- dedicated keys, 66
- laser pointer, 67
- speech commands, 66
- touch-to-focus, 68
- virtual path, 76
- wizard, 60
- World-in-Miniature, 76

Test
- pointing, 63
- refinement, 64
- Touch-to-Focus, 63

Testbed, 43
- assumptions, 43
- input devices, 45

Theory, 27
Time

- application focus, 56
- ouptut focus, 56
- primary task, 56

Touch-to-Focus, 63

Wizard of Oz, 55

Typeset May 17, 2006

	Erklärung
	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Interactive Workspace
	Control of multiple devices
	Scope and Contribution
	Structure of this thesis

	Related work
	Single Display Groupware
	Multi-Cursor window manager
	The Pebbles Project

	Interactive Workspaces
	ARIS
	PointRight
	The Intelligent Conference Room
	Universal Interaction Controller

	Post-desktop interaction
	Speech interface
	Pointing gesture
	Multimodal interfaces
	Eye-Tracking
	Continuous tracking techniques

	Theory of focus
	Focus in traditional desktop environment
	Focus in Interactive Workspace
	Shifting focus
	Tuple construction
	Recognition
	Indication
	Selection
	Feedback

	Implicit and Explicit focus techniques
	Distant interaction
	Focus methods

	Prototyping Interactive Workspace
	MediaSpace
	Infrastructure
	Patch Panel

	Patch Panel script
	Future improvements

	Interaction with the testbed
	Primary Tasks
	Procedure
	The Wizard
	Quantitative metrics

	Preliminary testing
	Focus technique
	Procedure
	Results and Discussion
	Method refinement

	Comparison of Focus Techniques
	Focus Techniques
	Dedicated-Keys
	Speech commands
	Pointing gesture
	Touch-to-Focus

	Procedure
	Modification

	Results
	Discussion
	Method refinement

	Comparison with GUI-based technique
	Focus techniques
	Virtual-Path
	World-in-Miniature

	Procedure
	Results
	Discussion

	Summary and Future work
	Summary
	Future work
	Simplified conditions
	Validity of methods
	Choice of measure

	Focus device prototype
	Coexisting focus techniques

	Patch Panel script
	NSWorkspace proxy
	Questionnaire
	Bibliography
	Index

